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Introduction to single cell transcriptomics analysis
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Current best practices in single-cell RNA-seq analysis: a tutorial / Malte Luecken, Fabian Theis
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1. Review of Bulk RNA sequencing: mRNA sequencing exaet
measures the quantity of mRNA molecule

RNA-Seq Overview - lllumina
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* Full length mRNA cannot yet be sequenced routinely (lllumina).
* Only short fragments can be sequenced accurately and cheaply.

.« RNA are fragmented into small pieces, typically 200 - 500 bases.
ApprOX|mater 100 bases are sequenced from one, or both, ends

1. Review of Bulk RNA sequencing
Reads are aligned to the genom

!Tram:ript
Data are represented as “depth
——— — _ _——— coverage” plots.

* The height of the bar over a nucleotide
is the number of reads which align

= = — across that location.
* The higher a gene is expressed, the
—— more reads we find for that gene.
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o pr————— &m’:‘ gene is expressed
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1. Review of Bulk RNA sequencing: RNA-seq analysis
pipeline e
Raw Daja Quality Control (FASTQC, Alignment Aligned Data
(FASTQ file) TrimGalore) (STAR, TOPHAT) (BAM, SAM file)
Quantification Read count Normalization RPKM, FPKM, TPM
(HTSeq, Samtools) (text or excel file) (text or excel file)
Differential Expression DEGs Further analysis (GSEA, Pathway;,
Analysis (DESeq2, edgeR) (text or excel file) Alternative splicing, Variant)
5

2. Why single cell?

* Cell identity and function can be characterizea.,_ja't |
the molecular level by unique transcriptome
signatures (Stegle et al. Nature Reviews Genetics
2015)

* Ensemble-based approaches (bulk RNA-seq) only
provide an average of each gene’s expression across
a large population of cells.

* What we cannot see using bulk measures?

1. Heterogeneity — early embryo, complex tissues such as
brain tissues

2. Cellular composition — Differential gene expression
between samples may be driven by cellular
composition

Stochasticity — gene expression bursts probabilistically




2. Why single cell? Bulk RNA-seq cannot be used for ce
heterogeneity
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2. Why single cell? scRNA-seq uncover bulk cell exp
patterns as well as single-cell-level heterogeneity
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3. Single cell technology

Single-cell RNA-Seq (scRNA-Seq)

. Isolate and sequence —
Tissue (e.g. tumor) individual cells —

Compare gene expression
Read Counts profiles of single cells
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3. Single cell technology
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Manual Multiplexing fluidic circuits robotics Nanodroplets Picowells barcoding
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3. Single cell technology

Smart-seq: Well-based scRNA-
seq

Celiﬂow
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10x Genomics: Microflui
droplet-based scRNA-seq
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mRNA-Seq whole-transcriptome analysis of a
single cell

Fuchou Tang'?, Catalin Barbacioru®?, Yangzhou Wang?, Ellen Nordman?, Clarence Lee?, Nanlan Xu?,

Xiaohui Wang?, John Bodeau?, Brian B Tuch?, Asim Siddiqui?, Kaigin Lao® & M Azim Surani'
Next-generation sequencing technology is a powerful tool for
transcriptome analysis. However, under certain conditions, only a
small amount of material is available, which requires more
sensitive technigues that can preferably be used at the single-
cell level. Here we describe a single-cell digital gene expression
profiling assay. Using our mRNA-Seq assay with only a single
mouse blastomere, we detected the expression of 75% (5,270)
more genes than microarray techniques and identified 1,753
previously unknown splice junctions called by at least 5 reads.
Moreover, 8-19% of the genes with multiple known transcript
isoforms expressed at least two isoforms in the same blastomere
or oocyte, which unambiguously demonstrated the complexity
of the transcript variants at whole-genome scale in individual
cells. Finally, for Dicer1~/~ and Ago2~/~ (Eif2c2~/~) oocytes,
we found that 1,696 and 1,553 genes, respectively, were
abnormally upregulated compared to wild-type controls,
with 619 genes in common.

Figure 1 | Schematic of the single-cell whole-transcriptome analysis. A single
cell is manually picked under a microscope and lysed. Then mRNAs are
reverse-transcribed into cDNAs using a poly(T) primer with anchor sequence
(UP1) and unused primers are digested. Poly(A) tails are added to the first-
strand cDNAs at the 3" end, and second-strand cDNAs are synthesized using
poly(T) primers with another anchor sequence (UP2). Then cDNAs are evenly
amplified by PCR using UP1 and UP2 primers, fragmented, and P1 and P2
adaptors are ligated to the ends. Finally, emulsion PCR is performed by mixing
libraries with 1 pm diameter beads with P1 primers covalently attached to
their surfaces.

Fuchou Tang

Cell lysis

O
cDNA
synihesis

!

Primer
removal

Poly(A}
tailing

i

Second-strand
cONA
synihesis

I

PCR
ampllfication

cDNA
shearing

Adaptor
ligation

t

Library
ampiltication

e

Question: How to capture the mRNA

molecule
material?

Azim Surani

@ Single call

%‘%‘

Free primers

AAAAL
TITIT:

UF1

—_— il
- TPTTT

Al ——————TTTTT——

upz
L e ——r s L 1 C
A —

—Z— SOLID P1 and P2 _—:._

—== adaptors ==

P1

in a small amount of

12




3. Single cell technology: STRT (single cell tagged re

transcription) — Multiplexing (2011)

Methad.

Characterization of the single-cell transcriptional
landscape by highly multiplex RNA-seq

Saiful Islam,* Una Kjallquist,'* Annalena Moliner,” Pawel Zajac,' Jian-Bing Fan,”
Peter Lonnerberg,' and Sten Linnarsson'-*
Ingtitutet, SE-171 77

'ummv g Biophyscs, Korolinsko
mamdmmme mumusﬂ;rnsmﬂm Swedeny; "Hiuming Inc, San Diega,
fﬂﬂ)ﬂl’aﬂh‘f usA

Our under of the and of tissues has been greatly aided by large-scale gene expression
analysis. However, tissues are invariably complex, and expression analysis of a tissue confounds the true expression
patterns of its constituent cell types. Here we describe a novel strategy to access such complex samples. Single-cell RNA-
seq expression profiles were generated, and clustered to form a two-dimensional cell map onto which expression data were
projected. The resulting cell map integrates three levels of the whole of cells, the functionally
distinct subpopulations it contains, and the single cells themselves—all without need for known markers to classify cell
types. The feasibility of the strategy was demonstrated by analyzing the transcriptomes of 85 single cells of two distinct
types. We believe this strategy will enable the unbiased discovery and analysis of naturally occurring cell types during
development, adult physiology, and disease.

Figure 1. Single-cell tagged reverse transcription (STRT). (A) Overview
of the method, illustrating the main steps in sample preparation: (i) mRNA
(brown) is reverse transcribed using a tailed oligo-dT primer (green),
generating a first-strand cDNA with 3-6 added cytosines; (ii) a helper oligo
(green) causes _template-switching _and thereby introduces a barcode
(shaded) and a primer sequence into the cDNA; (jii) the product is am-
plified by single-primer PCR exploiting the template-suppression effect
and is then immobilized on beads, fragmented, and A-tailed; (iv) the
llumina P2 adapter (blue) is ligated to the free end; (v) the P1 adapter is
| introduced in the library PCR step, using a primer tailed with the P1 se-
quence (blue); and (vi) the final library is sequenced from the P1 side using
a custom primer. Each read (arrow) begins by the barcode, followed by
three to six Cs, followed by the mRNA insert. (B) lllustration of read
mapping and annotation, for a two-exon gene. Reads mapping to the
sense strand of exons, as well as to splice junctions, were counted toward
the expression of the gene. Reads mapping upstream of, downstream
from, or in introns were counted for quality control purposes, and anti-
sense hits were used to judge the background level.
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Multiplexing using barcode reduces cell-to-cell
amplification bias since single-cell cDNA was
pooled before amplification 13

3. Single cell technology: SMART(switching mechanis

' end of RNA templates) (2012)

Full-length mRNA-Seq from single-cell levels of RNA
and individual circulating tumor cells

Daniel Ramskild' 27, Shujun Luo®”, Yu-Chieh Wang?®, Robin Li®, Qiaolin Deng', Omid R Faridani!,
Gregory A Daniels’, Irina Khrebtukova®, Jeanne F Loring®, Louise C Laurent®, Gary P Schroth® &
Rickard Sandberg!?

Genome-wide uanscﬂpinme ambyses are routinely used tomnniw tissue-, disease- and cell type-specific gene expression,
but it has been generate profiles from single cells. Here we describe a robust mRNA-Seq
protocol (Smart-Seq) that is applicable down to single cell levels. Compared with existing methods, Smart-Seq has improved
read ge across ipts, which detailed anah'ses of alternative transcript isoforms and identification of
single: We the and itative accuracy of Smart-Seq for single-cell
hnscrlptulmcs Ily evalualln; it on total RNA dilution serles We found that although gene expression estimates from single cells
have i d noise, ds of diffs
Seq to circulating tumor cells from melanomas, we identified distinct gene
for melanoma circulating tumer eells. Our protocel will be useful for
genome-wide transcriptome profiling in rare cells.

pattems, i

SMART-seq focus on the full-length transcript
coverage. SMART-seq can achieve the coverage
by using a reverse transcriptase enzyme from the
Moloney murine leukemia virus (template
switching and terminal transferase activity).

aniel Ramskold Rickard Sandberg

d genes could be identified using few cells per cell type. Applying Smart- cDNA amplification

Early methods Tang et al. (2009)
Single cell
AAAA ARAA B —— ]
™ T
Second-strand Second-strand =
synthesis synthesis —ecc TTTT
cDNA amplification cDNA amplification

1 Library prep Library prep
Microarray Sequencing Sequencing
or qPGR
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3. Single cell technology: UMI (2013)

Quantitative single-cell
RNA-seq with unique
molecular identifiers B

UMl Hurcode 5 and of transcript  Reads
Tn

Saifu Islam

Saiful Islam!, Amit Zeisel!, Simon Joost2,
Gioele La Manno!, Pawel Zajac!, Maria Kasper?,
Peter Lonnerberg! & Sten Linnarsson!

Revarss transenption, bareading and UMI labaling
UM 5" end of tranacript
—

T R

Single-cell RNA sequencing (RNA-seq) is a powerful tool to B emiientons
reveal cellular heterogeneity, discover new cell types and e
characterize tumor microevolution. However, losses in cDNA
synthesis and bias in cDNA amplification lead to severe
quantitative errors. We show that molecular labels—random
sequences that label individual molecules—can nearly
eliminate amplification noise, and that microfluidic sample
preparation and optimized reagents produce a fivefold
improvement in mRNA capture efficiency.

{1} 161 417 577 648 (1,024}
umi

UMI enables to quantify the mRNA eliminating
amplification noise.

3. Single cell technology: inDrops, cell (2015), page 1
/ Drop-seq, Cell (2015), page 1202-1214

Highly Parallel Genome-wide Expression Profiling

Droplet Barcoding for Single-Cell Transcriptomics of Individual Cells Using Nanoliter Droplets
A'u“a’ I"EI"””‘“' =§|B'll‘H Evan Z. Macosko,' " Anindita Basu,*." Rahul Satija,**' James Nemesh,'-* Karthik Shekhar, Melissa Goldman, '
I n b nqm‘ﬂlmam‘ m‘dJ;ﬂuuwﬂ."ml Trombetta,* David A. Weitz,"'0
b B S i L bbb st
Allon M. Kiein, - Linas Mazutis,’** ke Akartuna, * Naren Tallapragada,' Adrian Veres, " Victor L' Leor ! B
David A. Weitz.”" and Marc W. Kirschner"" iy Gonter 1or Prychininc Ressech, Brod Fititute of Hanig and MIT, Cambrcgn, MA 2147, USA
Biology, Boston, MA (2115, USA Harvard g MIT, Cambnags, MA 02142, USA
and Harvard Universsty, Camieidge, MA 02138, USA m“m Mmﬂw“m Carmbricige, MA 02142, USA
mﬂmmﬂ!mm mlLT-m.‘ Lithuania Cambicge, MA 02138, USA
Call and Harvard Universiy , Cambricige, MA 02138, USA Mmﬂmw hlunvuh.m\wl&l.ﬁn
wmmw;wmmmwa USA TDsparvrsof Bogy e Yrk Uiy, e Yo, 1 1000, USA
*The Program in Cellular Boaton, MAO2115, USA

mammmwmmhhm Harvard University, Cambridge, MA 02138, USA
=Degariment of Physios, Harvard Uwvorsiy, Combridge, MA 02138, USA
Hmu-umm and Harvard, Cambridga, MA 02138, LSA
Cremisty.
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Drop-seq enables to measure transcriptome of tens
L ihDrops ehables to measure transcriptome of of thousands of cells by using aqueous droplets and

housands of cells by using microfluidic barcoding system with UMI.
énded in carrier oil and barcoding
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3. Single cell technology (history)

‘ 2009: First single cell RNA-seq paper ‘ 2013: Smart-seq2

i PolyT pri | | PCR
| PolyT primer | | PCR | olyT primer

Template
switching (LNA)

o 2011: STRT (single cell tagged reverse @ 2013: UMI
transcription) - Multiplexing

PolyT primer PCR v
| EQIVT primer | | PR Cell Barcode Template "i{ '\q
switching i NSUA
Cell Barcode Template umi Sten Linnarsson

Sten Linnarsson switching

2012: SMART(switch mechamism at o
the 5’ end of RNA templates)-seq

2014: MARS(Massively parallel RNA
single-cell)-seq

PolyT primer VT
| PolyT primer | | PCR |
Cell Barcode EACS
Template
switching (CCC) umi
@ 2012: CEL-seq @ 2015:inDrops, Drop-seq
i PolyT primer IVT (inDrops)
| PolyT primer | | IVT | PCR (Drop-set)

CellB d Cell Barcode : 1+
——— \ 4 Droplets

umi Allon Klein  Evan Macosko
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4. What can we do using single cell transcriptom

* Heterogeneity = Cell type identification

» Dynamics = Cell type differentiation trajectory / Gene regulatory net
reconstruction = ldentifying key molecules regulating cellular behavior

* Interactions = Cellular communication

Pseudotime : .

Dimension reduction and )! . 5"t
Clustering e ® @@
LRy Ry *
Pancreatic cells 0@ ®@ - &

CIEBPy ¢

Iﬂll\\\\ e

ATF &J

E%i;\eli Proliferating

e
e e
-

Mesenchymal

Trapnell et al., Nature
Biotech. (2014) Giladi et al., Nature
Biotech. (2020)
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4. What can we do using single cell transcriptomics?
Dimension reduction and clustering

Clustering and

Pancreas Isolated islets  Single cells annotation

e - ‘f —

6 healthy & 4 T2D

ab C Dimension reduction
A - TR - S (PCA, tSNE, UMAP)

Egﬁpfli ?grating
a . ¥ . e
a

Mesenchymal
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4. What can we do using single cell transcriptomics?
Dynamics: Pseudotime analysis

Human Switch to Alignment Fusion Interstitial
myocblasts  low serum , . i o (= al
Proliferating Differentiating
‘ b —— cell —— myoblast —— z'neTlsenchymal
Time (h) Beginning of
! ! ! ! ! pseudotime
-24 0 24 48 72
Cells captured 70 74 77 49
Reads/cell 48 5.2 45 4.3
(millions)
CDK1
1,000 +

off

D1

Component 1

Component 2

Trapnell et al.,
Nature Biotech.

- (2014)
0 5 10 15 20
Pseudotime

Time in DM (h)
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4. What can we do using single cell transcriptomics?
Dynamics: Pseudotime analysis

Pseudotime analysis Gene-gene causal

relationships Gene regulatory networks
Z-score
Atf4 1 !
Cebpg
Map1le3b 08
® Fetal ® Child ® Adult Shmt2
WhbpS 0.6
Bnip3l
Vps26a
Ct1 i 04
Sdf2
pseudo-time Gabarap 0.2
1 Pdcd2
Hotairm1 0
o Texa0
Lin7c 02
06 Zfpo48
Gadd45b 04
Atg12
04 Limd2 06
Olflc1
. yar 08
o Nt5de2
Bag1 1
0 .
pseudotime
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4. What can we do using single cell transcriptomics?

single cell . .
Spatial transcripto

PIC-seq (two-cells) A Bead depositon In situindexing

ey

. 1Qum

.

Rodriques et al., Science
(2019)

Mouse hippocampus data
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5. Single cell
transcriptomics data
analysis pipeline
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5. Single cell transcriptomics data analysis pipelif
quality control

* For cell QC, we must filter out dying cells or double

* Three QC criterion
1. The number of counts per barcode
2. The number of genes per barcode
3. The fraction of counts from mitochondrial gene per barcode

e Example 1: cells with low counts, few detected genes,
and a high fraction of mitochondrial genes may represent
dying cells

* Example 2: cells with high counts and a large number of
detected genes may represent doublets

24
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5. Single cell transcriptomics data analysis pipel |
quality control

» Considering only one crite "".'-,-'--_
can lead to misinterpretation
of cellular signals

* High fraction of mitochondrial

., counts may be involved in
Saieven e i respiratory processes

Low counts and genes may
correspond to quiescent cell
populations

* High counts and genes may
2 A correspond large cell size
’ o (adipocytes)

o352 EHEE

Frequency
EEEEEEEN

o
o
°

B
Fraction mitochondrial counts
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5. Single cell transcriptomics data analysis pipeli
quality control

* For gene QC, we can filter out genes that are not expressed
more than a few cells

* You need to consider the minimum number of cell cluster size of your
interest when you choose the threshold.

* For example, you need to lower the threshold, when you tried to find a
rare cell type.

* Ambient gene expression (counts that do not originate from a
barcoded cell, but from other lysed cells whose mRNA
contaminated the cell suspension prior to library construction)

* For example, super-highly expressed genes can be detected in an
empty droplet. SoupX and DecontX provide a correction for this
contaminzation in droplet-based scRNA-seq datasets

............. Amblent
-------- RNA
.... o
. **** ."-.‘ '
- *
e ascc——g. "~.
CDNA synthesls R
wasens CONtamination

G . ‘
...... Coll
wemmessesss Barcode bead 26
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5. Single cell transcriptomics data analysis pipelines
normalization \

* Gene normalization / scaling (z scores): scaling gene counts to
have zero mean and unit variance. There is no consensus on
whether or not to do this.

* Should all genes be weighted equally? versus

* Is the magnitude of expression of a gene an informative for the
importance of the gene?

Count data Z scores

Highly expressed gene (#1)

Highly expressed gene (#1)

20

o X 10 Highly expressed gene (#100)

05; M”Hnm

10 ‘Highly expressed gene (#200)

, 10 Highly expressed gene (#100)

15
1 100
05
120
)
0 5 10 15 20 25 30
140

10 Highly expressed gene (#200)

2 8 8 8 8 »

‘ H
. L. -
0 2 4 6 8 10

200
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5. Single cell transcriptomics data analysis pipelines
normalization )

* Log normalization: log2(x+1) This is a useful tool for
the downstream analysis (DEG, clustering, etc.)! =
1. Distance between log-transformed expression values

represent log fold changes

2. Log transformation mitigates the mean-variance
relationship. Expression variance of a gene can be
considered as the importance of the gene. Then, the
importance of lowly-expressed genes can be ignored.

3. Log transformation reduces the skewness of the data to
approximate the assumption of many downstream
analysis tools that the data are normally distributed

28
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5. Single cell transcriptomics data analysis pipeli
normalization

Count data Log transformed

Highly expressed gene (#1) Highly expressed gene (#1)

20

A

5 X 10 Highly expressed gene (#100)

15
1
05
0
0 5 10 15

10 ‘Highly expressed gene (#200)

100
120
0
140
160
2
1
| B0
0 200
0 2 4 6 8 10 12

e 10 Highly expressed gene (#100)

« 10 Highly expressed gene (#200)

i

& & £ & 8 8§ 2 8 8 32
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5. Single cell transcriptomics data analysis pipeli
feature selection

* Depending on the task and the complexity
of the dataset, typically between 1,000
and 5,000 Highly Variable Genes (HVGs)
are selected.

w
1

[+3]
f

e Seurat procedure

1. Genes are binned by their mean
expression of count data

2. The genes with the highest variance-
to-mean ratio are selected as HVGs

Standardized Variance

w
N

1le02 1le+00 1le+02
Average Expression

30
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5. Single cell transcriptomics data analysis pipeli
dimension reduction and visualization

* Dimensionality reduction algorithms embed the expression matrix into a
low-dimensional space, which is designed to capture the underlying
structure in the data in as few dimensions as possible.

* Two main objectives:
1. Visualization: optimally describe the dataset in 2D or 3D

2. Summarization: can be used to reduce the data to its essential components
by finding the inherent dimensionality

* 2D visualization cannot be used for summarization (Visualization #
Summarization)

* Linear method: PCA

* Non-linear methods: t-SNE, Diffusion maps, UMAP, SPRING’s force-directed
layout.

*Dimensionality reduction
#Visualization

31

5. Single cell transcriptomics data analysis pipeli
dimension reduction and visualization - PCA

I. .
2 A 2 Al
l.- n'.‘ ’.
E 0 . .o'l'-}:':':- E 0 ER-
m L1 O] I ——
>< L] L L] ><
-2 o e, -2
"t ER+
.
—4. -4
4 2 0 2 4 2 0 2
GATA3 Projection onto PC1
d e f
=% 40 - 40
— 12 8 o o * .
@ 1]
Q 20 A O 20 . .
51 < PR O
g 8 0 £ 0 PP L Y
E 5 . 5 . :En: .r
° 84 § —20- § 20 ' v
g o 5 i :
=] '6-_4[]_ § —404 .
s 2 a .
a- O_ _607 T - T T T T 1 _607I T T T T 1
-40 =20 0 20 40 60 -40 20 0 20 40 60
Projection onto PCA1 Projection onto PC1

ncipal component analysis?”, Nature Biotechnology 2008
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5. Single cell transcriptomics data analysis pipeli
dimension reduction and visualization - PCA

* t-SNE suffers from limitations such as loss of large-scale information (the
inter-cluster relationships) and inability to meaningfully represent very lar
datasets.

* Both UMAP and t-SNE were successfully pulling together only clusters i
corresponding to similar cell populations.

* However, t-SNE separated cell populations into distinct clusters than UMAP.

t-SNE b UMAP t-SNE

<& *‘ | gﬁ\ ; : % 7
A ;5.: x> &’ 's‘ 5% )

Cell types Sample types
@ Contaminant (includingB) ®CD4T @CD8T @MAIT aNKILC T ©CB oPBMC «Liver Spleen Tonsil «Lung ®Gut ® Skin
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5. Single cell transcriptomics data analysis pipeli

clustering
 Clustering allows us to infer the identity of member cells.

* Clusters are obtained by grouping cells based on the similarity (or
distance) of their gene expression profiles.

 Clustering is a classical unsupervised machine learning problem, i
based directly on a distance matrix. :

Supervised learning Unsupervised learning
(There is ground truth) (No ground truth)
1
‘ | 3
N T -
® 0 | %
1) \ e 0 | © o | 08 |
\ o © o ©)
.. ®.x . | TS, O\ @,/
@) \ o =
(@) ® .\ o l |e )
00 o O\ L ! o
o © \ \ o/
\ I ~0 -
Supervised learning | Unsupervised learning
|

34

the Development Lifecycle of Machine Learning-Based loT Applications
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5. Single cell transcriptomics data analysis pipeli
clustering

* Two approaches

1. Conventional clustering algorithms: Cells are assigned to clusters by
minimizing intracluster distances or finding dense regions in the
reduced expression space.

2.  Community detection methods: graph-partitioning algorithms and
thus rely on a graph representation of single-cell data. (KNN graph)

* How would you design an algorithm for

25

- finding the three clusters in this case?
Q
3 o %80 * Acluster is a collection of data items
°o ‘o which are “similar” between them, and
& ° % “dissimilar” to data it in oth
e %y o issimilar” to data items in other
& e . clusters.
o eo9® o @
&% g o ®o o °°
o &9, e o o e o o
o Re] ® ..O e ® o.' ®
% © [ ™ (=] ® @ o@ @
T 1 . .
15 20 .. ® @ .. ® L 3
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5. Single cell transcriptomics data analysis pipeli
clustering

Jaccard Similarity

@ n v
Vi = Vo ool

Modularity ,

Dana Pe’er

Algorithm

1. Construct a K-nearest neighbor graph using Euclidean distance

2. Construct a weighted shared nearest neighbor graph using
Jacarrd similarity

Maximize the modularity using the Louvain method

36
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5. Single cell transcriptomics data analysis pipeﬁ
cell type identification

* The gene signature a.k.a. marker genes characterize the
cluster and are used to annotate it with a meaningful biological
label.

* There are several axes of variation that determine cellular
identity

1. Itis not always clear what constitutes a cell type. Ex) “T cells” may
be a satisfactory label of a cell type to some, others may look for
CD4+ and CD8+ T cells.

2. Cells of the same cell type in different states may be detected in
separate clusters.

<

¢ Identifying and annotating clusters relies on using external
sources of information describing the expected expression
profiles of individual cell identities. = == - e i

*r
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5. Single cell transcriptomics data analysis pipeﬁ Eih
cell type identification N

. leo ways to use reference database information to annotate
clusters |

1. Data-derived marker genes

* Differential expression (DE) testing between the cells in one cluster and
all other cells in the dataset (typically up-regulated in the cluster of
mte;'est) with simple statistical tests (Wilcoxon rank-sum test or the t-
test

* Null hypothesis: genes have the same distribution of expression values
between the two groups.

* The p-values are often inflated, which can lead overestimation of the
number of marker genes. However, the ranking is unaffected. = We
can focus on the top-ranked marker genes.

* Differential gene expression not only depends on the cell cluster but
also on the dataset composition.

2. Automated cluster annotation by directly comparing the
gene expression profiles of annotated reference clusters to
individual cells.

_+*The current best practice is a combination of both
Approaches.
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