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본 강의 자료는 한국생명정보학회가 주관하는 BIML 2024 워크샵 온라인 수업을 목적으로 

제작된 것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다.

이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없으며 만약 이러한 사항을 위반할 경우 

발생하는 모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고합니다.



KSBi-BIML 2024
Bioinformatics & Machine Learning(BIML)

Workshop for Life and Medical Scientists

안녕하십니까?

한국생명정보학회가 개최하는 동계 교육 워크샵인 BIML-2024에 여러분을 초대합니다. 생명정보학 

분야의 연구자들에게 최신 동향의 데이터 분석기술을 이론과 실습을 겸비해 전달하고자 도입한 

전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하여 올해로 벌써 10년 차를 맞이하게 되었

습니다. BIML 워크샵은 국내 생명정보학 분야의 최초이자 최고 수준의 교육프로그램으로 크게 

인공지능과 생명정보분석 두 개의 분야로 구성되어 있습니다. 올해 인공지능 분야에서는 최근 

생명정보 분석에서도 응용이 확대되고 있는 다양한 인공지능 기반 자료모델링 기법들에 대한 현장 

강의가 진행될 예정이며, 관련하여 심층학습을 이용한 단백질구조예측, 유전체분석, 신약개발에 

대한 이론과 실습 강의가 함께 제공될 예정입니다. 또한 단일세포오믹스, 공간오믹스, 메타오믹스, 

그리고 롱리드염기서열 자료 분석에 대한 현장 강의는 많은 연구자의 연구 수월성 확보에 큰 도움을 

줄 것으로 기대하고 있습니다. 

올해 BIML의 가장 큰 변화는 최근 연구 수요가 급증하고 있는 의료정보자료 분석에 대한 현장 강의를 

추가하였다는 것입니다. 특히 의료정보자료 분석을 많이 수행하시는 의과학자 및 의료정보 연구자

들께서 본 강좌를 통해 많은 도움을 받으실 수 있기를 기대하고 있습니다. 또한 다양한 생명정보학 

분야에 대한 온라인 강좌 프로그램도 점차 증가하고 있는 생명정보 분석기술의 다양화에 발맞추기 

위해 작년과 비교해 5강좌 이상을 신규로 추가했습니다. 올해는 무료 강좌 5개를 포함하여 35개 

이상의 온라인 강좌가 개설되어 제공되며, 연구 주제에 따른 연관된 강좌 추천 및 강연료 할인 

프로그램도 제공되며, 온라인을 통한 Q&A 세션도 마련될 예정입니다. BIML-2024는 국내 주요 연구 

중심 대학의 전임 교원이자 각 분야 최고 전문가들의 강의로 구성되었기에 해당 분야의 기초부터 

최신 연구 동향까지 포함하는 수준 높은 내용의 강의가 될 것이라 확신합니다.

BIML-2024을 준비하기까지 너무나 많은 수고를 해주신 운영위원회의 정성원, 우현구, 백대현, 

김태민, 김준일, 김상우, 장혜식, 박종은 교수님과 KOBIC 이병욱 박사님께 커다란 감사를 드립니다. 

마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 현장 강의와 온라인 

강의를 준비하시는데 노고를 아끼지 않으신 모든 강사분들께 깊은 감사를 드립니다. 

2024년 2월

한국생명정보학회장 이 인 석



강의개요

Single cell analysis (spatial transcriptomics)

최근 유전체 분석 기술의 지속적인 발전으로 단일세포 수준에서의 세포간의 이질성을 확인할 수 

있게 됨에 따라 다양한 생물학적 기전에 대한 분자적인 수준에서의 이해가 높아지고 있다. 

이와 더불어, 공간전사체 분석 기술의 등장으로 세포들의 공간적 분포나 맥락을 분석에 고려할 수 

있게 되어 보다 복잡한 생물학적인 기전에 대한 이해를 도전할 수 있게 되었다.

본 워크샵에서는 일반에 공개된 사람의 배외측 전전두피질 조직 10x Visium 데이터를 활용해 전

반적이고 심층적인 공간전사체 분석을 진행, 그에 대한 생물학적 해석을 하는 것을 목표로 한다.

강의는 다음의 내용을 포함한다:

  ⚫ Introduction to Spatially Resolved Transcriptomics (SRT)

  ⚫ SRT preprocessing

  ⚫ SRT analysis

  ⚫ SRT workflow

* 교육생준비물: 노트북 (메모리 8GB 이상, 디스크 여유공간 30GB 이상)

* 강의 난이도: 초급

* 강의: 최정민 교수 (고려대학교 의과학과 컴퓨터공학부) / 천하림, 김지현, 박주영 조교
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Spatially Resolved Transcriptomics (SRT) 

Brief Overview 

Jungmin Choi, Ph.D. 
 

Department of Biomedical Sciences 
Korea University, College of Medicine 

 

Contents covered today 

• Introduction 
- A broad overview of single-cell data and experimental spatially resolved 
techniques 

 
• Computational methodology and frameworks 

- Different flavors of currently available spatially resolved data analysis 
methods 
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Human Body 
is Made of  

37 Trillions  
of Cells 

 

Uhlen et al., 2019 

Cell type 
enriched 
genes 

Group 
enriched 
genes 

Each cell expresses a set of different genes  
that enable them to carry out specialized functions 
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Single cells help gain insight into  
complexity of biology 

 Brain tissue Bulk genomics Single-cell genomics 

Image credit to Bo Xia 

The average behavior measured in millions of cells (bulk genomics)  

does not necessarily reflect the behavior in individual cells 

Why care 
single cells? 
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1. Single cells can identify and characterize cell types  
CD3D NKG7 

CD8A FOXP3 

Human PBMC 

Cell clusters of interest can be even further explored 
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2. Single cell data can delineate cellular composition  
and their dynamics of cell state 

Drzewiecki & Choi et al., 2021 

The homozygous deletion of Gimap5 leads to the accumulation of a 

specific type of endothelial cells, resulting in portal hypertension 

Mouse endothelial cells 

3. Single cells can isolate strongly associated genes 

Gpr83 Trpm8 Gpr83 + Trpm8 

G
pr

83
 

Trpm8 

Mouse neuronal cells 

Pain-sensing 
neurons 

Grp83 and Trpm8 interaction is observed in pain-sensing 
neurons exclusively, suggesting important roles 

Kim et al., 2022 
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4. Single cell data can predict a continuum  
from static snapshots of cell state 

Gorin et al., 2022 

Neurogenesis 

A sequential trajectory  
of cliff diving 

https://images.app.goo.gl/DiAojKks7CLDdZwz6 

Exponential scaling of single cell sequencing tech. 

 
 

Svensson et al., 2018 

Few cells     <    100s cells     <<    10,000 cells         <<<<<<         100,000 cells 
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Microfluidic droplet-based cell isolation 

A gif image from dropseq.org 

Zheng et al., 2017 

GAME-CHANGER 

Unfortunately, single cell transcriptomics loses context 

The first law of geography 
Everything is related to everything else,  

but near things are more related than distant things 

The original brain single-cell RNA Sequencing Spatially resolved transcriptomics 

Image credit to Bo Xia 
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There are two types of SRT (SRT) methods 

Lee et al., 2022 

Various experimental spatially resolved techniques 

Asp et al., 2020 
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1. Microdissection-based technology 

 
• Dissect a region of interest, place isolate in separate 

wells, and sequence 
 

• Examples: Laser Capture Microdissection (LCM), 
Tomo-seq. TIVA, ProximID, and Niche-seq 

Asp et al., 2020 

Liao et al., 2021 

2. in situ hybridization-based technology 

 
• Label probes for specific targets, hybridize in place 

 

• Require “a priori” defined targets 
 

• Examples) smFISH, seqFISH, MERFISH, 
seqFISH+, osmFISH, RNA Scope, DNA microscopy 

* FISH – Fluorescence In Situ Hybridization 
Asp et al., 2020 

Liao et al., 2021 
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3. in situ sequencing-based technology 

 
• Sequence the transcripts in place 

 

• Offer sub-cellular resolution. Some rely on “a priori” 
defined targets 
 

• Examples: ISS/Cartana, BaristaSeq, STARmap, and 
FISSEQ 

Asp et al., 2020 

Liao et al., 2021 

4. in silico reconstruction technology 

 
• Infer and reconstruct spatial structure from non-spatial 

data like single-cell transcriptomes 
 

• At the core of this framework lies a structural 
correspondence hypothesis that cells in physical 
proximity share similar gene expression profiles 
 

• Examples: novoSpaRc, CSOmap, and Seurat v3 

Asp et al., 2020 

Liao et al., 2021 
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5. in situ capture-based technologies 

 
• Capture the transcripts in situ but sequence ex situ 

 

• Usually less dependent on prior selection of targets 
 

• Examples) Visium, Spatial Transcriptomics (ST), 
Slide-seq, HDST, GeoMX, APEX-Seq, and Stereo-
seq 

Asp et al., 2020 

Liao et al., 2021 

SRT is an emerging class of high-throughput 
technologies and evolves rapidly  

https://images.app.goo.gl/Tpbyse6HWm7Lfdft8 

Asp et al., 2020 
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Recommended review literature on SRT 
• Rao A, Barkley D, França GS, Yanai I. Exploring tissue architecture using spatial transcriptomics. 

Nature. 2021 Aug;596(7871):211-220. doi: 10.1038/s41586-021-03634-9. Epub 2021 Aug 11. PMID: 
34381231; PMCID: PMC8475179. 
 

• Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to 
elucidate intercellular tissue dynamics. Nat Rev Genet. 2021 Oct;22(10):627-644. doi: 
10.1038/s41576-021-00370-8. Epub 2021 Jun 18. PMID: 34145435. 
 

• Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial 
transcriptomics for biomedical research. Genome Med. 2022 Jun 27;14(1):68. doi: 
10.1186/s13073-022-01075-1. PMID: 35761361; PMCID: PMC9238181. 
 

• Moses L, Pachter L. Museum of spatial transcriptomics. Nat Methods. 2022 May;19(5):534-546. 
doi: 10.1038/s41592-022-01409-2. Epub 2022 Mar 10. Erratum in: Nat Methods. 2022 Apr 19;: PMID: 
35273392. 
 

• Lee J, Yoo M, Choi J. Recent advances in spatially resolved transcriptomics: challenges and 
opportunities. BMB Rep. 2022 Mar;55(3):113-124. doi: 10.5483/BMBRep.2022.55.3.014. PMID: 
35168703; PMCID: PMC8972138. 

More in detail for in situ capture-based SRT 

Asp et al., 2020 
https://images.app.goo.gl/VZfTmDfkjjQ38Vzm8 

10X Visium 

- 12 -



Capture-based SRT pertains spatial context :: Visium 

https://images.app.goo.gl/2k36WDczUaUcBFTYA 

Stahl et al., 2016 

1. Array-based technique (4 arrays per slide) 
2. 6.5mm x 6.5mm area to put the sample on  
3. 4,992 spots arranged in a hexagonal grid  
4. Array specs:  

 ○  Spot diameter: 55μm  
 ○  Center-to-center distance: 100 μm  

We are witnessing an evolution of Visium last decade 

• Successor to Spatial Transcriptomics (ST)  
• Approx. 1-10 cells contribute to each spot  
 Not a single-cell resolution!  
• Data represented as [spot] x [gene] matrix  
• You also get HE images of the same tissue  

https://twitter.com/AlbertVilella/status/1367028429300916225/photo/1 

https://images.app.goo.gl/5jH4HrQoE5VBPksZ9 

Visium Visium HD (available soon) 

ST 

- 13 -



Human esophageal cancer 10X Visium data example 

Spots Only Spots + H&E Spots + H&E + CTTN exp 

Face color intensity proportional to 
gene expression value 

Will be performing hands-on exercise today 

Computational data analysis methodology  

for SRT 
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• R-based tools 
�Seurat 
�STUtility (extended spatial function for Seurat) 
�Giotto (greater variety of built-in tools for spatial analysis) 
�SpatialExperiment 

 
• Python-based tools 

�scanpy 
�squidpy (extended spatial functions for scanpy) 
�stLearn (integrates spatial distance, tissue morphology and gene 

expression from spatial data) 

Generalized toolkits for spatial analysis 

Diverse technologies for SRT 
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Single cell inspired methods 

Apply existing algorithms developed for 
single-cell data on spatial data 
 
Example:  
• Cluster spatial data and show clusters in space 
• Factor models for data decomposition 
• Trajectory inference 
 
Available algorithms: 
Seurat 
scanpy 
STUtility 
stLearn 
BayesSpace 
SpatialExperiment (similar to SingleCellExperiment) etc. 

Single cell inspired methods :: BayesSpace 

Pathological annotation Spatial mapping of clusters Enhancement of spatial mapping 

Zhao et al., 2021 
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Integration with single cell data 

Use single-cell data as a reference when 
working with spatial data 
 
Why integrate spatial data with single cells? 
 
1. Efficient use of resources: Leverage extensive 

annotation already done for single-cell data 
2. The problem of low resolution: Mixed cells in Visium 

spots 

Integration with single cell data: mixed cell population 

Spot 1 Spot 2 Spot 3 

In several capture-based techniques (e.g., Visium and Slide-seq), observed expression values are 
a combination of multiple cell types and not all necessarily the same cell type. 
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Clusters do not represent single-cell type 

Cluster 

Population 

 

• Rather, clusters are more an assembly 

of spots with a similar composition of 

cell types 

 

• We do not know what the cell type 

population looks like 

 

We do not know what the cell type population look like 

Cluster 

Population 

Expression 

Unknown 

• Clusters do not represent single-cell 
type 
 

• Rather, clusters are more an assembly 
of spots with a similar composition of 
cell types 
 
 
 
 

• We only have observed expression 
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Estimate cell type abundance  
from observed gene expression profile 

Different methods for integration with single cell data 

Marker gene Anchor Probabilistic 
Model Optimization 

Extract marker genes for 
each cell type from single 
cell data 

Find anchors between 
single cell and spatial 
data.  
Create correction vectors 
based on expression 
differences 

Assume gene expression 
follows a certain statistical 
distribution.  
Joint model for single cell 
and spatial data. 

Find spatial location 
where each cell most 
likely to reside 

Compute enrichment 
score for each set of 
marker genes in spatial 
locations 

Use correction vectors to 
integrate two data sets. 
Transfer labels of single 
cells to spatial data 

Learn cell type 
parameters from single 
cell data and use them to 
deconvolve spatial data 

Simultaneously optimize 
terms such as: 
• Cell density 
• UMI distribution 
• Gene distribution 

Moncada et al., 2020 Seurat Stereoscope, RCTD, 
cell2location 

Tangram 

- 19 -



Integration with single cell data :: RCTD 

• A probabilistic model for inferring cell types in spatial transcriptomics data, supervised with a 
labeled single-cell RNA-seq reference 

• Robust cell-type decomposition (RCTD) uses maximum likelihood estimation to identify cell 
types present on each spatial transcriptomics spot, in addition to estimating cell type 
proportions 

• Robust decomposition of cell type mixture in spatial transcriptomics 

Cable et al., 2022 

Integration with single cell data :: Tangram 

Via integration, Tangram creates new spatial data by aligning the scRNAseq 
profiles in space. This allows to project every annotation in the scRNAseq 
(e.g. cell types, program usage) on space. 

Biancalani et al., 2022 
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Spatially aware methods 

Attempts to include knowledge of spatial 
structure in the analysis, not only to visualize 
results 

 
• Identifying spatially variable genes and features 

• Finding spatially coherent expression domains 

• Leveraging spatial proximity to increase the robustness of 

inference 

• Finding local correlations between features 

Spatially aware methods :: spatially variable genes 

• Spatially variable genes (SVGs) are genes with a highly spatially 
correlated pattern of expression, which varies along with the 
spatial distribution of a tissue structure of interest 
 

• Standard statistical measures such as Moran’s I or Geary’s C can 
be used to rank genes 
 

• SpatialDE, SVCA, and SPARK use probabilistic models 
 

• Essentially, test whether a ”spatial” term in the covariance function 
significantly increases model’s ability to explain data 
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Spatially aware methods :: spatially variable genes 

• 20 gene expression profiles from mouse brain 
 

• Shuffle spots to get random expression profiles (with “shuf” prefix) 

y p y g

• 20 gene expression profiles from mouse brain

SVG 

SVG 

shuffled 
SVG 

shuffled 
SVG 

Spatially aware methods :: spatial domain patterns 

• Normal clustering mainly focus on gene expression  
 

• Leverage spatial information to find spatially coherent 
clusters (domains)  
 

• Normally use HMRF 
• Construct a graph based on spatial proximity  
• The probability of a node (spot) belonging to a specific 

domain depends on:  
 ○  Agreement with a domain expression profile  
 ○  Coherence with neighbors  

Zhu et al., 2018 
 gene expression (xi) and neighborhood configuration (cNi) 

HMRF (Hidden Markov Random Field) 
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Spatially aware methods :: spatial domain patterns 
STARCH  
 
• Infers Copy Number Aberrations (CNA) from spatial 
transcriptomics data  
• Increases robustness of inference by aggregating data in the 
same domains (similar profiles)  
• It uses Hidden Markov Random Fields (HMRF) 

scHOT  
 
• Computes (spatially) weighted correlations to 
find local correlations 
• It also uses Hidden Markov Random Fields 
(HMRF) 

Elyanow et al., 2021 

Ghazanfar et al., 2020 

Deep learning 

Apply deep learning to spatial data (very broad)  
 

• Relatively few examples. Limited amount of high-quality available 
data.  
 

Current examples: 
  
• XFuse: “superresolution” (pixel) of gene expression by learning 

joint representation of image and expression data.  
• stPlus: Uses scRNA-seq data and autoencoders to enhance 

spatial transcriptomics data  
• SpaGCN: simultaneous domain and SVG detection using graph 

convolution layers  
• RESEPT: Uses graph convolutional network to embed spatial data 

in RGB space, then uses a CNN to segment data into spatially 
coherent tissue domains  
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Computational suites: squidpy 

“One framework to rule them all, one 
framework to find them...”  
 
• It builds on top of scanpy and anndata, from which it inherits 

modularity and scalability.  

• Tailored towards spatial data with support for multiple different 

experimental platforms (not only Visium)  

• Easy to construct spatial graphs and perform graph operations  

• Has excellent interface with ML ecosystems such as PyTorch, 

TensorFlow and sklearn  

Palla et al., 2022 

Snapshots of spatial transcriptomics applications 

Larsson et al., 2023 

- 24 -



Take home messages 

� There are tons of spatial techniques 
  

� An ever-increasing repertoire of computational methods!  
 
○ A lot of tools out there, but sometimes beneficial to construct custom solutions  

 
� Spatial-omics data is already improving our understanding of human health and 

disease in research, diagnostic, and therapeutic setting 

- 25 -



KSBi-BIML 2023 
 

Analysis of Spatially resolved transcriptomics  

2 

R/Python script, objects, power point slides and can be downloaded here: 
https://www.dropbox.com/sh/v4k9hvwlwhab8pz/AAC3ta-o_LdawSGQ_--2UWdDa?dl=0 

Welcome to Spatial Transcriptomic session 

Steps File name Input/Output 

chapter 5 single cell reference BIML_sc_allen_cortex.rds chapter 5, 6 input 

chapter 5 processed visium data BIML_visium_brain_processed.rds chapter 5 output 

chapter 5 processed visium data BIML_visium_cortex_processed.rds chapter 5 output 

chapter 6 spacexr doublet mode metadata BIML_spacexr_cortex_doubletmode.csv chapter 6 output 

chapter 6 spacexr full mode assay BIML_spacexr_cortex_fullmode.csv chapter 6 output 

chapter 6 spacexr/seurat meta  visium BIML_visium_cortex_annotated.rds chapter 7, 8 input 

chapter 7 conda environment info environment.yml chapter 7 python environment 

chapter 7 anndata BIML_visium_cortex_anndata.h5ad chapter 7 input/output 

chapter 7 jupyter notebook BIML_chapter7_squidpy_code.ipynb chapter 7 python script 

chapter 8 visium json BIML_scalefactors_json.json chapter 8 input 

chapter 8 cellchat prop calculated object BIML_visium_cortex_prob_cellchat.rds chapter 8 output 

chapter 9 stutility input folder BIML_visium_STutility_input_files chapter 9 input 

chapter 9 stutility object BIML_visium_cortex_stutility.rds chapter 9 output 

1. Input files and python script highlighted with purple should be downloaded before starting analysis 
2. Please make a directory for this analysis and save necessary objects at the directory 
3. Set the directory before we start analysis 
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Table of Contents 

3 

Exercise 

Chapter 1 What is R programming? 

Chapter 2 Then why python? 

Chapter 3 What is single cell RNA-seq and spatial transcriptomics? 

Chapter 4 What is Space Ranger? 

Chapter 5 Integrative analysis of spatial datasets - Seurat 

Chapter 6 Decomposition/Mapping analysis – Seurat/SpaceXR 

Chapter 7 Neighborhood analyis and co-occurrence - Squidpy 

Chapter 8 Cell-cell interaction - CellChat 

Chapter 9 Visualization of blended spatial plot of several features – STutility 

Chapter 10 Summary 

Chapter 11 Q&A 

1. What is R programming? 
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• R is used widely in biological research and provides a solid  
    platform for beginner scientific programmers.  
• It’s free and open-source. 
• Bioconductor uses the R statistical programming language and is 

open source and open development. 

5 

Modified from : https://datacarpentry.org/semester-biology/about/why-r/ 
https://www.bioconductor.org/ 

dely in biological research and provvidesvides

What is R and Why R? 

Command line Interface 

6 

Graphical user interface 

Rstudio d line Interface RRstudRstud
Several ways to use R 
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• Rstudio – Integrated development environment (IDE) for R and python  

Code editor 

R console 

Environment / History 

Other panes 
(Files, Plots, Packages, Help) 

Code editor       . 
Ctrl+Enter         . 

Rstudio 

2. Then why python? 
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• Some analysis tools are solely based on python 
 
 
 
 
• Here we will use squidpy for neighborhood enrichment analysis,  
   which R does not provide, on chapter 6 

9 

S l i t l l l b d th

Python provides analysis tools that R does not 

3. What is single cell RNA-seq 
and spatial transcriptomics? 
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Single-cell transcriptomics 

Examines the gene expression level of individual cells in a given population by simultaneously 
measuring the RNA concentration (conventionally only messenger RNA (mRNA)) of hundreds to 
thousands of genes. 

Spatial transcriptomics 
Since Visium Spatial Gene Expression is a spatial transcriptomics solution, you can analyze the 
transcriptome within the tissue context. 
 
Visium Spatial Gene Expression works with cell capture slides that contain four capture areas with 
5,000 barcoded spots. These barcoded spots include capture oligonucleotides that bind to the 
RNA in the tissue. 

https://www.10xgenomics.com/single-cell-technology 

https://www.10xgenomics.com/spatial-transcriptomics 

4. What is Space Ranger 
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• Space Ranger is a set of analysis pipelines for processing 10X 
Genomics Visium sequence data (FASTQ files) with high resolu
tion microscope images of tissue. 

• It maps the transcriptomic reads to the microscope image of the 
tissue 

• We will introduce spaceranger count pipeline 

13 

i ttt f lff i i li fii

What is Space Ranger? 

https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/what-is-space-ranger 

14 

• spaceranger mkfastq  
• spaceranger count  
• spaceranger aggr  
• spaceranger targeted-compare  
• spaceranger targeted-depth  

kf t

Space Ranger Pipelines 
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# Terminal 
$cd /opt 
$tar -xzvf spaceranger-2.0.0.tar.gz 

Installing Space Ranger 
 1. Download and unpack the Space Ranger .tar.gz file in any location 

$tar -xzvf refdata-gex-GRCh38-2020-A.tar.gz 

 2. Download and unpack proper reference data .tar.gz file in a convenient    
     location 

$export PATH=/opt/spaceranger-2.0.0:$PATH 

 3. Pre-pend the Space Ranger directory to your $PATH 

https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/installation 

16 

https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/using/count 

• Input : the microscope image (.tiff), FASTQ files(Fastq) 
• Perform : sequence alignment, tissue detection 
• Output : gene-spot matrix 

# Terminal 
 
$cd /home/jdoe/runs 
$spaceranger count --id=sample345 \ #Output directory 
                   --transcriptome=/home/jdoe/refdata/GRCh38-2020-A \ #Path to Reference 
                   --fastqs=/home/jdoe/runs/HAWT7ADXX/outs/fastq_path \ #Path to FASTQs 
                   --sample=mysample \ #Sample name from FASTQ filename 
                   --image=/home/jdoe/runs/images/sample345.tiff \ #Path to brightfield 
image 
                   --slide=V19J01-123 \ #Slide ID 
                   --area=A1 \ #Capture area 
                   --localcores=8 \ #Allowed cores in localmode 
                   --localmem=64 #Allowed memory (GB) in localmode 
 

i l

Run spaceranger count command 

- 33 -



17 

Output files of Space Ranger 

https://lmweber.org/OSTA-book/space-ranger-visium.html 

  
Input files 

18 

• raw_feature_bc_matrix 
      Dataset having spots that theoretically don’t overlap with tissue 

• filtered_feature_bc_matrix 
      Dataset filtered to the spots overlapping tissue, as determined by Loupe Browser 
      (Visium) alignment file 

• tissue_positions_list.csv 
      The spot coordinates information is stored 

• scalefactors_json.json 
      Scaling factors that convert spot coordinates to pixel coordinates 

• metrics_summary.csv 
      Metrics displayed in the interactive website 

• web_summary.html 
      Interactive website 

Output files 
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https://lmweber.org/OSTA-book/space-ranger-visium.html 

Web summary .html file 

20 

Web summary .html file 

https://lmweber.org/OSTA-book/space-ranger-visium.html 

Metrics Definition Expected/Recommended value 

Number of Spots Under Tissue The number of barcodes associated with a spot under tissue. 

Mean Reads per Spot The number of reads, both under and outside of tissue, divided by 
the number of barcodes associated with a spot under tissue. Recommended: 50,000 

Median Genes per Spot 
The median number of genes detected per spot under tissue-asso
ciated barcode. Detection is defined as the presence of at least 1 

UMI count. 

Vary by sample, and low values are not necessa
rily indicative of a failed experiment 

Number of reads Total number of read pairs that were assigned to this library in 
demultiplexing. 

Fresh frozen libraries: a minimum of 50k 
FFPE v1 libraries: a minimum of 25k 

Valid Barcodes Fraction of reads with barcodes that match the whitelist* after barc
ode correction Expected >75% 

Valid UMIs Fraction of reads with valid UMIs Expected >75% 

Sequencing Saturation The fraction of reads originating from an already-observed UMI 
Dependent upon sequencing depth and sample 

complexity 
(at last 60-80 % in most applications) 

Q30 bases in barcode, Sample I
ndex, or UMI 

Fraction of tissue-associated barcode, Sample Index, or UMI base
s with Q-Score >= 30, excluding very low quality/no call (Q≤2) bas

es from the denominator 

Sequencing platform dependent 
(Most Illumina runs generate >70-80% Q30 data) 
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• Loupe Browser is a desktop application from 10x Genomics that 
allows to visualize gene expression data without having to write 
code 

• Align gene expression spots to histological images, look for mar
ker gene expression, annotate populations, and cluster 

• The .cloupe file is the one that need to import into the Loupe Bro
wser 

• Generally, 1~2 GB each 

21 

i d kt li ti f 10 GG

What is a Loupe Browser? 

Loupe Browser 

22 
https://support.10xgenomics.com/spatial-gene-expression/software/visualization/latest/analysis 

Histology image &  
UMAP & t-SNE 

Manual 
Annotation of 

spots 
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install.packages("ggplot2") 
install.packages("devtools") 
install.packages("remotes") 
install.packages("dplyr") 
install.packages("anndata") 
install.packages("cowplot") 
install.packages('Seurat') 
devtools::install_github('satijalab/seurat-data') 
devtools::install_github("thomasp85/patchwork") 
devtools::install_github("dmcable/spacexr", build_vignettes = FALSE) 
remotes::install_github("jbergenstrahle/STUtility") 
remotes::install_github("sqjin/CellChat") 

i t ll k (" l t2")

Download R packages to be used in analysis 

Load packages 
library(ggplot2) 
library(devtools) 
library(remotes) 
library(dplyr) 
library(anndata) 
library(cowplot) 
library(Seurat) 
library(SeuratData) 
library(patchwork) 
library(spacexr) 
library(STUtility) 
library(cellchat) 
# For reproducibility set the seed 
set.seed(1234) 

  

5. Integrative analysis of  
  spatial datasets - Seurat 
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Dataset Description 

25 

We will be using a recently released dataset of sagital mouse brain slices 
generated using the Visium v1 chemistry. 
 
There are two serial anterior sections, and two (matched) serial posterior 
sections. 
 
Biological annotations of spots (i.e., cell group information) are predicted 
using Seurat (https://satijalab.org/seurat/articles/spatial_vignette.html). 

# You need to specify exact directory 
setwd("biml_2023") 
 
# We can easily download the data with functions below 
options(timeout=600) 
InstallData("stxBrain") 
 
brain <- LoadData("stxBrain", type = "anterior1") 
Same with 
brain = LoadData("stxBrain", type = "anterior1") 

Load Brain data 

26 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

Explore Seurat object 
brain 
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brain@meta.data %>% head(3) 

metadata explanation 

nCount_Spatial the total number of detected molecules in each sample 

nFeature_Spatial the number of unique genes in each sample 

slice name of the stored image 

Explore metadata 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

28 

metadata explanation 

tissue Binary, indicating if the spot falls inside (1) or outside (0) of tissue 

row The row coordinate of the spot in the array from 0 to 77 

col The column coordinate of the spot in the array 

imagerow The row pixel coordinate of the center of the spot in the full resolution image. 

imagecol The column pixel coordinate of the center of the spot in the full resolution image. 

brain@images$anterior1@coordinates %>% head(3) 

Explore coordinates 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 
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# nCount_Spatial: the total number of detected molecules in each sample 
plot1 = VlnPlot(brain, features = "nCount_Spatial", pt.size = 0.1) 
+ NoLegend() 
plot2 = SpatialFeaturePlot(brain, features = "nCount_Spatial") + 
theme(legend.position = "right") 
 
# wrap_plots: take a list of plots and add them into one composition 
wrap_plots(plot1, plot2) 

Load Brain data 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

30 

# SCTransform calculates a model of technical noise  using 'regularized negative binomial regression’.    
   This replaces NormalizeData, ScaleData, and FindVariableFeatures. 
 

brain = SCTransform(brain, assay = "Spatial", verbose = FALSE) 

Pre-processing: SCT normalize 

SpatialFeaturePlot(brain, features = c("Hpca", "Ttr")) 

Visualization of gene expression  

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 
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# PCA dimensionality reduction 
brain = RunPCA(brain, assay = "SCT", verbose = FALSE) 
 

# Compute an SNN (Shared Nearest-neighbor) on the gene expression level  
brain = FindNeighbors(brain, reduction = "pca", dims = 1:30) 
brain = FindClusters(brain, verbose = FALSE) 
brain = RunUMAP(brain, reduction = "pca", dims = 1:30) 

Dimension reduction and clustering 

p1 = DimPlot(brain, reduction = "umap", label = TRUE) 
p2 = SpatialDimPlot(brain, label = TRUE, label.size = 3) 
p1 + p2 

Visualization of each cluster 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

32 

# facet.highlight: split each group into its own plot 
SpatialDimPlot(brain, cells.highlight = CellsByIdentities(object = brain, 
idents = c(2, 1, 4, 3, 5, 8)), facet.highlight = TRUE, ncol = 3) 

Spatial Dimplot of some cluster 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 
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Identification of spatially variable features 

33 

# We can find cluster 5 markers compared to cluster 6 
de_markers = FindMarkers(brain, ident.1 = 5, ident.2 = 6) 
SpatialFeaturePlot(object = brain, features = 
 rownames(de_markers)[1:3], alpha = c(0.1, 1), ncol = 3) 
 

saveRDS(brain, "./BIML_visium_brain_processed.rds") 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

34 34 

Subset out anatomical regions 
cortex = subset(brain, idents = c(1, 2, 3, 4, 6, 7)) 
cortex = subset(cortex, anterior1_imagerow > 400 | anterior1_imagecol < 150, invert = TRUE) 
cortex = subset(cortex, anterior1_imagerow > 275 & anterior1_imagecol > 370, invert = TRUE) 
cortex = subset(cortex, anterior1_imagerow > 250 & anterior1_imagecol > 440, invert = TRUE) 
 
p1 = SpatialDimPlot(cortex, crop = TRUE, label = TRUE) 
p2 = SpatialDimPlot(cortex, crop = FALSE, label = TRUE, pt.size.factor = 1, label.size = 3) 
# We merge two plots 
p1 + p2 
 
cortex = SCTransform(cortex, assay = "Spatial", verbose = FALSE) %>%  RunPCA(verbose = FALSE) 
 

saveRDS(cortex, "./BIML_visium_cortex_processed.rds") 

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors Transfer annotation 
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Integrate single cell and visium spatial gene expression data 

https://www.10xgenomics.com/resources/analysis-guides/integrating-single-cell-and-visium-spatial-gene-expression-data 

Elucidate spatiality in single cell data and improve resolution in Visium data 
 
Problem 
Single Cell RNAseq methods resolve gene expression at the single cell level, but lose the spatial context. 
Visium spatial gene expression maintains spatial information, but the resolution of each spot is limited (1-10 cells). 
 
Solution 
- Deconvolution (Identify the cell types and their relative proportions contributing to a spot) 
- Mapping (Assign the most likely dominant cell type to a spot) 

Load and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

Load reference single cell data 
allen_reference = readRDS("./BIML_sc_allen_cortex.rds") 
allen_reference = SCTransform(allen_reference, ncells = 3000, verbose = 
FALSE) %>% RunPCA(verbose = FALSE) %>% RunUMAP(dims = 1:30) 
allen_reference 
 
DimPlot(allen_reference, group.by = "subclass", label = TRUE) 

Load and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors Transfer annotation 
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Find TransferAnchors 

37 

# anchors: cross-dataset pairs that are in a matched biological state 
# Find a set of anchors between a reference and query object. These anchors can later be used to  
   transfer data from the reference to query object using the TransferData object. 
 
anchors = FindTransferAnchors(reference = allen_reference, query = 
cortex, normalization.method = "SCT") 

Load and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

38 

# TransferData: Transfer categorical or continuous data across single-cell datasets 
# weight.reduction: Dimensional reduction to use for the weighting anchors 
 

predictions.assay = TransferData(anchorset = anchors, refdata = 
allen_reference$subclass, prediction.assay = TRUE, weight.reduction 
= cortex[["pca"]], dims = 1:30) 
 

predictions.assay[,1:3] %>% t() 

Acquire prediction assay 

Load and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

- 44 -



39 

# Created prediction assay 
 

cortex[["predictions"]] = predictions.assay 
DefaultAssay(cortex) = "predictions” 
 

SpatialFeaturePlot(cortex, features = c("L2/3 IT", "L4"), 
pt.size.factor = 1.6, ncol = 2, crop = TRUE) 

Insert the prediction assay into the cortex object 

Load and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

Spatial Feature Plot of predicted cell type proportion 
pdf('./integreated_spatialfeautrePlot.pdf', width = 10, height = 5) 
SpatialFeaturePlot(cortex, features = c("Astro", "L2/3 IT", "L4", "L5 PT", "L5 IT"), 
pt.size.factor = 1, ncol = 5, crop = FALSE, alpha = c(0.1, 1)) 
SpatialFeaturePlot(cortex, features = c("Astro", "L2/3 IT", "L4", "L5 PT", "L5 IT"), 
pt.size.factor = 1, ncol = 5, crop = T, alpha = c(0.1, 1)) 
dev.off() 

Load and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors Transfer annotation 
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Transfer annotation 

41 

# We also get predicted cell type metadata for each spot 
 
predictions = TransferData(anchorset = anchors, refdata = 
allen_reference$subclass,weight.reduction = cortex[["pca"]], dims = 1:30) 
cortex = AddMetaData(cortex, metadata = predictions) 
cortex$predicted.id <- factor(cortex$predicted.id) 
cortex <- SetIdent(cortex, value="predicted.id") 
SpatialDimPlot(cortex, label = T, label.size = 3) 

Load and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors Transfer annotation 

rm(allen_reference) 
rm(brain) 
rm(cortex) 
rm(anchors) 
rm(predictions); 
rm(predictions.assay); 
gc() 

Remove all objects before starting next chapter 
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6. Deconvolution Analysis  
    - SpaceXR 

RCTD Algorithm 

RCTD(Robust cell type decomposition) 
Method that decomposes cell type mixtures using cell type profiles 
learned from single-cell RNA-seq 
 
1.Calculates the mean gene expression profile of each cell type within the scRNA-
seq reference 
2.By fitting each spatial transcriptomics spot as a linear combination of individual cell 
types, RCTD generates a spatial map of cell types 
The gene expression of each cell type for a given spot is estimated by fitting a 
statistical model to observed gene counts, which are assumed to follow Poisson 
distributions. 
3.This model is also optimized with MLE 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 

Robust decomposition of cell type mixtures in spatial transcriptomics 
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Load RCTD input reference dataset (single cell) 

allen_reference = readRDS("./BIML_sc_allen_cortex.rds") 
allen_reference = subset(allen_reference, subclass != c("CR")) 

Excluded CR cell type since since it needs a minimum of 25 cells for each cell type in the 
reference 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 

Prepare single cell dataset for RCTD input 
allen_counts = allen_reference$RNA@counts 
allen_meta_data = allen_reference@meta.data 
allen_reference = SetIdent(allen_reference, value="subclass") 
# Renamed the cluster due to prohibited characters “/” 
allen_reference = RenameIdents(allen_reference, "L2/3 IT" = "L2_3 IT") 
allen_reference$subclass = allen_reference@active.ident 
allen_annotation  = allen_reference@meta.data$subclass 
 
names(allen_annotation) = rownames(allen_meta_data) 
allen_annotation = as.factor(allen_annotation) 
allen_nUMI = allen_meta_data$nCount_RNA 
names(allen_nUMI) = rownames(allen_meta_data) 
allen_reference = Reference(allen_counts, allen_annotation, allen_nUMI) 
 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 
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Process spatial dataset for RCTD input 

brain = readRDS("./BIML_visium_brain_processed.rds") 
spatial_counts_brain = brain@assays$Spatial@counts 
spatial_nUMI_brain = colSums(spatial_counts_brain) 
coords_brain = brain@images$anterior1@coordinates[,c("col","row")] 
puck_brain = SpatialRNA(coords_brain, spatial_counts_brain, spatial_nUMI_brain) 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 

Running RCTD (Full mode, Doublet mode) 
# Doublet mode: Fits at most two cell types per pixel. Classifies each pixel as 'singlet' or 'doublet' and searches for the cell  
                            types on the pixel. 
# Full mode: Fit any number of cell types on each pixel 
# Each process takes 30 min ~ 1 hour 
 
RCTD_brain = create.RCTD(puck_brain, allen_reference, max_cores = 8) 
RCTD_brain = run.RCTD(RCTD_brain, doublet_mode = 'full’) 
RCTD_brain_doublet = run.RCTD(RCTD_brain, doublet_mode = 'doublet')  

# We need to normalize the decomposed matrix 
RCTD_results = sweep(RCTD_brain@results$weights, 1, 
     rowSums(RCTD_brain@results$weights), '/’) 
 
write.csv(RCTD_results, "./BIML_spacexr_cortex_fullmode.csv") 
write.csv(RCTD_brain_doublet@results$results_df,"./BIML_spacexr_cortex_doubletmode.c
sv") 

Save RCTD results file 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 
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full_rctd = read.csv("./BIML_spacexr_cortex_fullmode.csv", header = TRUE, 
row.names = 1) 
colnames(full_rctd) = gsub("weights.","",colnames(full_rctd)) 
brain[['RCTD']] = CreateAssayObject(counts = t(as.matrix(full_rctd))) 
DefaultAssay(brain) = "RCTD" 

Processs RCTD decomposed file (full mode) 

doublet_rctd <- read.table("./BIML_spacexr_cortex_doubletmode.csv", sep=",", 
header=TRUE) 
spacexr_metadata <- doublet_rctd[,c("X", "first_type")] 
colnames(spacexr_metadata) <- c("barcodes", "spacexr_first_type") 
rownames(spacexr_metadata) <- spacexr_metadata$barcodes; 
spacexr_metadata$barcodes <- NULL 
brain <- AddMetaData(brain, spacexr_metadata) 
brain <- SetIdent(brain, value="spacexr_first_type") 

Processs RCTD decomposed file (doublet mode) 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 

pdf("./RCTD_decomposed_Spatial_Featureplot.pdf", height=15, width=25) 
SpatialFeaturePlot(brain, features =rownames(brain),ncol=8, 
pt.size.factor = 1.6, crop = TRUE) 
dev.off() 

Spatial map of predicted cell type proportions by RCTD 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 
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cortex = subset(brain, seurat_clusters %in% c(1, 2, 3, 4, 6, 7)) 
cortex = subset(cortex, anterior1_imagerow > 400 | anterior1_imagecol < 150, invert = TRUE) 
cortex = subset(cortex, anterior1_imagerow > 275 & anterior1_imagecol > 370, invert = TRUE) 
cortex = subset(cortex, anterior1_imagerow > 250 & anterior1_imagecol > 440, invert = TRUE) 
SpatialDimPlot(cortex) 
 
# This file will be used in the Squidpy and CellChat Analysis 
saveRDS(cortex, "./BMIL_visium_cortex_annotated.rds") 

Spatial map of predicted cell type proportions by RCTD 

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution 

rm(brain) 
rm(spatial_counts_brain) 
rm(spatial_nUMI_brain) 
rm(coords_brain) 
rm(nUMI_brain) 
rm(puck_brain) 
rm(barcodes_brain) 
rm(RCTD_brain) 
rm(RCTD_brain_doublet) 
rm(RCTD_results) 
rm(full_rctd) 
rm(doublet_rctd) 
rm(spacexr_metadata) 
rm(cortex) 
gc() 

Remove all objects before starting next chapter 
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7. Neighborhood Analysis  
  of Co-occurrence - Squidpy 

Install Squidpy via conda 

54 

We assume that conda is already installed on your laptop/computer 
 
Instruction below starts from installing jupyter notebook. If you have equivalent platform for visualizing 
result plots, just follow black parts 
 
1. Open your terminal and move to the directory ‘biml_2023’ where we downloaded all files for the exercise 

 
2. Type conda env create -f environment.yml to create conda environment named squidpy  

 
3. Type  python –m pip install –upgrade pip  

 
4. Type python -m pip install jupyter 

 
5. Type conda activate squidpy 

 
6. Type conda install -c anaconda ipykernel 

 
7. Type python -m ipykernel install --user –name=squidpy 

 
8. Type conda deactivate 

 
9. Type jupyter notebook 

 
10. Change kernel to squidpy like the image 

 

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 
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Convert data from Seurat object to Anndata  

55 

In R 
 
cortex = readRDS(‘BMIL_visium_cortex_annotated.rds’) 
 

seuratoadata = anndata::AnnData(X = t(cortex@assays$SCT@data), 
       obs = cbind(cortex@meta.data,cortex@images$anterior1@coordinates), 
             dtype='float32’) 
 
anndata::write_h5ad(seuratoadata,’BMIL_visium_cortex_anndata.h5ad’) 

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 

Load and expore how anndata looks like 

56 

In Python 
 
import scanpy as sc 
import anndata as ad 
import squidpy as sq 
import numpy as np 
import pandas as pd 
 
adata = ad.read_h5ad(“BMIL_visium_cortex_anndata.h5ad”) 
adata 

n_obs: cell number 
n_vars: gene number 
obs: info of seurat@metadata 

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 
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Save spatial information in adata.obsm 

57 

In Python 
 
# make an array having spatial coordinates  
 

spatial_info = adata.obs[['row', 'col']].values.tolist() 
adata.obsm['spatial'] = np.array(spatial_info) 
 
adata 

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 

Builds a spatial graph 

58 

In Python 
 
sq.gr.spatial_neighbors(adata) 
 
# Adjacency matrix  
adata.obsp["spatial_connectivities"] 
 
# Weighted Adjacency matrix  
adata.obsp["spatial_distances"] 

Build spatial graph with  
observations( = spots) as nodes and 
neighbor-hood relations between 
observations as edges.  
 
To identify neighbors, spatial coordinates 
of spots are used. 

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 
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In Python 
 
sq.gr.nhood_enrichment(adata, cluster_key=“spacexr_first_type”) 

Calculate enrichment score based on spatial graph  

59 

Enrichment score is calculated based on permutation-based test  
involving spatial graph .  
 
If spots belonging to two different clusters are often close to each other, then 
they will have a high score and can be defined as being enriched.  

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 

In Python 
 
sq.pl.nhood_enrichment(adata, cluster_key=“spacexr_first_type”) 

Visualize neighborhood enrichment and select the pair 

60 

Except for diagonal squares,  
Oligo – L6b pair has the high 
enrichment. 
(red boxed) 

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 
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Calculate co-occrurence probability 

61 

In Python 
 
sq.gr.co_occurrence(adata, cluster_key="spacexr_first_type") 

Co-occurence also shows the closeness of two different clusters but without involving 
spatial graph. It is operated on the original spatial coordinates. 
The co-occurrence score is defined as: 
 
 
 
 
The score is computed across increasing radii size around each spots in the tissue. 

p(exp|cond):  conditional probability of observing a cluster exp conditioned on the presence of 
a cluster cond 
p(exp): probability of observing exp in the radius size of interest. 

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 

Visualizing Co-occurrence of other cell types with  
Oligodendrocytes 

62 

Visualizing the result of Co-occurrence score with Oligodendrocytes.  
Similar to neighborhood enrichment result, though not the highest, Oligo shows high Co-
occurrence score when the distance (=radii) is small. 

In Python 
 

# Set cond as Oligo by param ‘clusters’  
sq.pl.co_occurrence(adata, cluster_key="spacexr_first_type", 
        clusters=”Oligo", figsize=(8*1.2, 4*1.2)) 

hen the distance ( radii) is small.

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis 
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7. Cell-cell interaction analysis  
  - Cellchat 

CellChat is an useful tool to quantitatively infer and analyze intercellular communication 
networks from single-cell RNA-sequencing data and spatial transcriptomics data. 

Requires gene expression and spatial location data of spots/cells as the user input and mo
dels the probability of cell-cell communication by integrating gene expression with spatial dist
ance as well as prior knowledge of the interactions between signaling ligands, receptors and t
heir cofactors. 

64 

What is CellChat? 

JIN, Suoqin, et al. Inference and analysis of cell-cell communication using CellChat. Nature communications, 2021, 12.1: 1-20. 
https://htmlpreview.github.io/?https://github.com/sqjin/CellChat/blob/master/tutorial/CellChat_analysis_of_spatial_imaging_data.html 
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Load data 

65 

# Load cell type annotated visium data and set levels for the downstream analysis. 
visium.brain = readRDS('./BIML_visium_cortex_annotated.rds') 
 

visium.brain$spacexr_first_type  = factor(visium.brain$spacexr_first_type, 
levels=c("Astro", "L2_3 IT", "L4", "L5 IT", "L5 PT", "L6 CT", "L6 IT", 
"L6b", "Lamp5", "Meis2”, "Oligo", "Peri", "Sncg", "Sst", "VLMC")) 
 

Idents(visium.brain) = visium.brain$spacexr_first_type 
 
colors = scPalette(nlevels(visium.brain)) 
names(colors) = c("Astro", "L2_3 IT", "L4", "L5 IT", "L5 PT", "L6 CT", "L6 
IT", "L6b", "Lamp5", "Meis2", "Oligo", "Peri", "Sncg", "Sst", "VLMC") 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

Visualization of our data 

66 

SpatialDimPlot(visium.brain, label = T, label.size = 3, cols = colors) 

There are 15 cell types from our visium data. 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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Prepare input data for CellChat analysis 

67 

data.input = GetAssayData(visium.brain, slot = "data", assay = "SCT") 
meta = data.frame(labels = Idents(visium.brain), row.names = 
names(Idents(visium.brain))) 
 

# check the cell labels 
unique(meta$labels) 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

Load spatial imaging information 

68 

# Load spatial imaging information to get the spot information. 
 

spatial.locs = GetTissueCoordinates(visium.brain, scale = NULL, cols = 
c("imagerow", "imagecol")) 
  
scale.factors = jsonlite::fromJSON(txt = "BIML_scalefactors_json.json") 
 
scale.factors = list(spot.diameter=65, 
spot=scale.factors$spot_diameter_fullres, fiducial = 
scale.factors$fiducial_diameter_fullres, hires = 
scale.factors$tissue_hires_scalef, lowres = 
scale.factors$tissue_lowres_scalef) 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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Create a CellChat object 

69 

# Create a CellChat object for the downstream analysis. 
 

cellchat = createCellChat(object = data.input, meta = meta, group.by = 
"labels", datatype = "spatial", coordinates = spatial.locs, scale.factors = 
scale.factors) 
 
cellchat 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

Set the ligand-receptor interaction database 

70 

CellChatDB = CellChatDB.mouse 
cellchat@DB = CellChatDB 

CellChatDB : Manually curated database of literature-supported ligand-receptor interactions 
in both human and mouse. 
 
Since our toy data is a mouse brain 10x visium data, we load CellChatDB.mouse 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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Preprocess of the expression data for cell-cell 
communication analysis 

71 

# Subset the expression data of signaling genes for saving computation cost 
cellchat = subsetData(cellchat) 
 

# do parallel 
future::plan("multiprocess", workers = 4) 
 

# Identify over-expressed ligands or receptors in one cell group  
cellchat = identifyOverExpressedGenes(cellchat) 
 

# Identify over-expressed ligand-receptor interactions if either ligand or receptor is over-expressed. 
cellchat = identifyOverExpressedInteractions(cellchat) 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

# Infers the biologically significant cell-cell communication with permutation test 
cellchat = computeCommunProb(cellchat, type = "truncatedMean", trim = 0.1,  
                             distance.use = TRUE, interaction.length = 200,  
                             scale.distance = 0.01) 
cellchat = filterCommunication(cellchat, min.cells = 10) 
 

saveRDS(cellchat, file = 'BIML_visium_cortex_prob_cellchat.rds') 
 

# read RDS file if computeCommunProb() takes too much time (optional) 
cellchat = readRDS("BIML_visium_cortex_prob_cellchat.rds") 

Compute the communication probability and infer 
cellular communication network 

72 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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Infer the cell-cell communication at a signaling 
pathway level 

73 

# Computes the communication probablity on signaling pathway level 
cellchat = computeCommunProbPathway(cellchat) 

The inferred intercellular communication network of each ligand-receptor pair and each 
signaling pathway is stored in the slot ‘net’ and ‘netP’, respectively. 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

Calculate the aggregated cell-cell communication 
network 

74 

# Calculate the aggregated cell-cell communication network 
cellchat = aggregateNet(cellchat) 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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Visualization of the aggregated cell-cell 
communication network 

75 

par(mfrow = c(1,2), xpd=TRUE) 
 
netVisual_circle(cellchat@net$count, vertex.weight = 
rowSums(cellchat@net$count), weight.scale = T, label.edge= F, title.name = 
"Number of interactions") 
 
netVisual_circle(cellchat@net$weight, vertex.weight = 
rowSums(cellchat@net$weight), weight.scale = T, label.edge= F, title.name = 
"Interaction weights/strength") 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

Identify ligand-receptor pairs between L6b and Oligo 

76 

CellChat::netVisual_bubble(cellchat, sources.use =  c(8), targets.use 
=c(11), remove.isolate = FALSE, angle.x = 90,thresh = 0.05) +coord_flip() 

Levels Labels Levels Labels 
1 Astro 9 Lamp5 
2 L2_3 IT 10 Meis2 
3 L4 11 Oligo 
4 L5 IT 12 Peri 
5 L5 PT 13 Sncg 
6 L6 CT 14 Sst 
7 L6 IT 15 VLMC 
8 L6b 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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Inferred communication network of signaling 
pathways – Circle plot 

77 

pathways.show = c(”PSAP")  
 

par(mfrow=c(1,1)) 
netVisual_aggregate(cellchat, signaling = pathways.show, layout = "circle") 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

Inferred communication network of signaling 
pathways – Spatial plot 

78 

par(mfrow=c(1,1)) 
 

# Visualization information on the spatial imaging 
netVisual_aggregate(cellchat, signaling = pathways.show, layout = 
"spatial", edge.width.max = 2, vertex.size.max = 1, alpha.image = 0.2, 
vertex.label.cex = 3.5) 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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Compute the network centrality scores 

79 

# Compute the network centrality scores 
cellchat = netAnalysis_computeCentrality(cellchat, slot.name = "netP") 
 
# Visualize the centrality score 
par(mfrow=c(1,1)) 
netAnalysis_signalingRole_network(cellchat, signaling = pathways.show, 
width = 8, height = 2.5, font.size = 10) 

 
Visualize the computed centrality scores using heatmap, allowing ready identification of 
major signaling roles of cell groups 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 

Visualize the network centrality scores - Spatial plot 

80 

# Visualize the network centrality scores on the spatial imaging. 
par(mfrow=c(1,1)) 
netVisual_aggregate(cellchat, signaling = pathways.show, layout = 
"spatial", edge.width.max = 2, alpha.image = 0.2, vertex.weight = 
"incoming", vertex.size.max = 3, vertex.label.cex = 3.5) 

Bigger circle indicates larger incoming signaling. 
Incoming and outgoing signal can be visualized. 

• Incoming signaling : vertex.weight='incoming'  
• Outgoing signaling : vertex.weight='outgoing' 

Load dataset Preprocessing Inference of cell-cell communication network Visualization network 
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9. Visualization of multi-feature 
  blended spatial plot - STutility 

# Terminal 
 
$ curl -O https://cf.10xgenomics.com/samples/spatial-
exp/1.0.0/V1_Mouse_Brain_Sagittal_Anterior/V1_Mouse_Brain_Sagittal_Anterior_filtered_feature_bc_matrix
.h5 # download 
$ curl -O https://cf.10xgenomics.com/samples/spatial-
exp/1.1.0/V1_Mouse_Brain_Sagittal_Anterior/V1_Mouse_Brain_Sagittal_Anterior_spatial.tar.gz 
 
$ tar -xvzf V1_Mouse_Brain_Sagittal_Anterior_spatial.tar.gz 

Download spaceranger output Construct STutility object Blended Spatial Feature Plot 

Download dataset for STutility 
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# Set working directory to pre-downloaded directory (optional) 
setwd('BIML_visium_STutility_input_files') 
 
infoTable = data.frame(samples =      
 c("./V1_Mouse_Brain_Sagittal_Anterior_filtered_feature_bc_matrix.h5"), 
spotfiles = c("./spatial/tissue_positions_list.csv"), 
imgs = c("./spatial/tissue_hires_image.png"), 
json = c("./spatial/scalefactors_json.json"), stringsAsFactors=FALSE) 
 
Mouse_Brain_STutility = InputFromTable(infotable = infoTable, platform =  "Visium") 
 
# Function used to read HE images in jpeg or png format 
Mouse_Brain_STutility = LoadImages(Mouse_Brain_STutility,  
     time.resolve = FALSE, verbose = TRUE) 

Download spaceranger output Construct STutility object Blended Spatial Feature Plot 

Construct STutility object 

plot_grid( 
  ST.FeaturePlot(Mouse_Brain_STutility, features = c("Psap"), cols=c("white","green")), 
  ST.FeaturePlot(Mouse_Brain_STutility, features = c("Gpr37l1"), cols=c("white","red")), 
  ST.FeaturePlot(Mouse_Brain_STutility, features = c("Psap","Gpr37l1"), 
blend=TRUE,channels.use=c("green","red")), ncol=3) 
 
saveRDS(Mouse_Brain_STutility, "./BIML_visium_cortex_stutility.rds") 

Download spaceranger output Construct STutility object Blended Spatial Feature Plot 

Ligand and Receptor Feature Plot 
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10. Summary 

Cell-Cell interaction 

Summary 
10X Genomics Visium sequence data & High-resolution microscope images of tissues 

Gene-Spot matrix 

Integrative analysis of spatial datasets 

Deconvolution and Mapping Analysis 

Neighborhood analysis 
and co-occurrence 

Seurat, SpaceXR 

Squidpy CellChat 

spaceranger count 

Seurat 

Visualization of blended 
spatial data 

STutility 

- 68 -



Reference 
Space Ranger 
Zheng, Grace X.Y., Terry, Jessica M., [...] Bielas, Jason H. (2017). Massively parallel digital transcriptional profiling of single cells. Nature 
Communications. 8: 1-12, doi:10.1038/ncomms14049 
 
Seurat 
Hao Y, Hao S, Andersen-Nissen E, III WMM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zagar M, Hoffman P, Stoeckius M, Papalexi E, 
Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LB, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R 
(2021).  “Integrated analysis of multimodal single-cell data.” Cell. doi:10.1016/j.cell.2021.04.048, https://doi.org/10.1016/j.cell.2021.04.048 
 
SpaceXR 
Cable, Dylan M., et al. “Robust decomposition of cell type mixtures in spatial transcriptomics.” Nature Biotechnology 40.4 (2022): 517-526. 
 
Squidpy 
Palla, G., Spitzer, H., Klein, M. et al. Squidpy: a scalable framework for spatial omics analysis. Nat Methods 19, 171–178 (2022). 
https://doi.org/10.1038/s41592-021-01358-2 
 
CellChat 
Jin, S., Guerrero-Juarez, C.F., Zhang, L. et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 12, 1088 
(2021). https://doi.org/10.1038/s41467-021-21246-9 
 
Stutility 
Bergenstråhle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. 
BMC Genomics 21, 482 (2020). https://doi.org/10.1186/s12864-020-06832-3 

11. Q&A 

- 69 -




