KSBi-BIML 2024

Bioinformatics & Machine Learning(BIML) Workshop for Life and Medical Scientists

생명정보학 & 머신러닝 워크샵 (온라인)

Single cell analysis (spatial transcriptomics)

최정민_고려대학교

본 강의 자료는 한국생명정보학회가 주관하는 BIML 2024 워크샵 온라인 수업을 목적으로 제작된 것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다.

이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없으며 만약 이러한 사항을 위반할 경우 발생하는 **모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고**합니다.

KSBi-BIML 2024

Bioinformatics & Machine Learning(BIML) Workshop for Life and Medical Scientists

안녕하십니까?

한국생명정보학회가 개최하는 동계 교육 워크샵인 BIML-2024에 여러분을 초대합니다. 생명정보학 분야의 연구자들에게 최신 동향의 데이터 분석기술을 이론과 실습을 겸비해 전달하고자 도입한 전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하여 올해로 벌써 10년 차를 맞이하게 되었 습니다. BIML 워크샵은 국내 생명정보학 분야의 최초이자 최고 수준의 교육프로그램으로 크게 인공지능과 생명정보분석 두 개의 분야로 구성되어 있습니다. 올해 인공지능 분야에서는 최근 생명정보 분석에서도 응용이 확대되고 있는 다양한 인공지능 기반 자료모델링 기법들에 대한 현장 강의가 진행될 예정이며, 관련하여 심층학습을 이용한 단백질구조예측, 유전체분석, 신약개발에 대한 이론과 실습 강의가 함께 제공될 예정입니다. 또한 단일세포오믹스, 공간오믹스, 메타오믹스, 그리고 롱리드염기서열 자료 분석에 대한 현장 강의는 많은 연구자의 연구 수월성 확보에 큰 도움을 줄 것으로 기대하고 있습니다.

올해 BIML의 가장 큰 변화는 최근 연구 수요가 급증하고 있는 의료정보자료 분석에 대한 현장 강의를 추가하였다는 것입니다. 특히 의료정보자료 분석을 많이 수행하시는 의과학자 및 의료정보 연구자 들께서 본 강좌를 통해 많은 도움을 받으실 수 있기를 기대하고 있습니다. 또한 다양한 생명정보학 분야에 대한 온라인 강좌 프로그램도 점차 증가하고 있는 생명정보 분석기술의 다양화에 발맞추기 위해 작년과 비교해 5강좌 이상을 신규로 추가했습니다. 올해는 무료 강좌 5개를 포함하여 35개 이상의 온라인 강좌가 개설되어 제공되며, 연구 주제에 따른 연관된 강좌 추천 및 강연료 할인 프로그램도 제공되며, 온라인을 통한 Q&A 세션도 마련될 예정입니다. BIML-2024는 국내 주요 연구 중심 대학의 전임 교원이자 각 분야 최고 전문가들의 강의로 구성되었기에 해당 분야의 기초부터 최신 연구 동향까지 포함하는 수준 높은 내용의 강의가 될 것이라 확신합니다.

BIML-2024을 준비하기까지 너무나 많은 수고를 해주신 운영위원회의 정성원, 우현구, 백대현, 김태민, 김준일, 김상우, 장혜식, 박종은 교수님과 KOBIC 이병욱 박사님께 커다란 감사를 드립니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 현장 강의와 온라인 강의를 준비하시는데 노고를 아끼지 않으신 모든 강사분들께 깊은 감사를 드립니다.

2024년 2월

한국생명정보학회장 이 인 석

Single cell analysis (spatial transcriptomics)

최근 유전체 분석 기술의 지속적인 발전으로 단일세포 수준에서의 세포간의 이질성을 확인할 수 있게 됨에 따라 다양한 생물학적 기전에 대한 분자적인 수준에서의 이해가 높아지고 있다.

이와 더불어, 공간전사체 분석 기술의 등장으로 세포들의 공간적 분포나 맥락을 분석에 고려할 수 있게 되어 보다 복잡한 생물학적인 기전에 대한 이해를 도전할 수 있게 되었다.

본 워크샵에서는 일반에 공개된 사람의 배외측 전전두피질 조직 10x Visium 데이터를 활용해 전 반적이고 심층적인 공간전사체 분석을 진행, 그에 대한 생물학적 해석을 하는 것을 목표로 한다.

강의는 다음의 내용을 포함한다:

- Introduction to Spatially Resolved Transcriptomics (SRT)
- SRT preprocessing
- SRT analysis
- SRT workflow
- * 교육생준비물: 노트북 (메모리 8GB 이상, 디스크 여유공간 30GB 이상)
- * 강의 난이도: 초급
- * 강의: 최정민 교수 (고려대학교 의과학과 컴퓨터공학부) / 천하림, 김지현, 박주영 조교

Curriculum Vitae

Speaker Name: Jungmin Choi Ph.D.

▶ Personal Info

Email

Name	Jungmin Choi
Title	Associate Professor
Affiliation	Korea University

► Contact Information

73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, South Korea Address jungminchoi@korea.ac.kr Phone Number 010-2120-9874

Research Interest

Genetics, genomics, computational biology

Educational Experience

2004	B.S. in Chemistry, Yonsei university, Korea
2012	Ph.D. in Genetics, University of Maryland, USA

Professional Experience

2013-2018	Postdoctoral research fellow, Yale University, USA
2018-2019	Research Associate, Rockefeller University, USA

Selected Publications (5 maximum)

- 1. Lim VY*, Feng X*, Miao R, Zehentmeier S, Ewing-Crystal N, Lee M, Tumanov AV, Oh JE, Iwasaki A, Wang A, Choi J§, Pereira JP§. Mature B cells and Mesenchymal Stem Cells control emergency myelopoiesis. J Exp Med. 2022 in press.
- 2. Manavella DD, McNamara B, Harold J, Bellone S, Hartwich TMP, Yang-Hartwich Y, Mutlu L, Zipponi M, Demirkiran C, Verzosa MS, Altwerger G, Ratner E, Huang GS, Clark M, Andikyan V, Azodi M, Schwartz PE, Dottino PR, Choi J, Alexandrov LB, Buza N, Hui P, Santin AD. Ovarian and uterine carcinosarcomas are sensitive in vitro and in vivo to Elimusertib, a novel ataxia-telangiectasia and Rad3-related (ATR) kinase inhibitor. Gynecol Oncol. 2022 in press.
- 3. Harold J, Bellone S, Manavella DD, Mutlu L, McNamara B, Hartwich TMP, Zipponi M, Yang-Hartwich Y, Demirkiran C, Verzosa MS, Choi J, Dong W, Buza N, Hui P, Altwerger G, Huang GS, Andikyan V, Clark M, Ratner E, Azodi M, Schwartz PE, Santin AD. Elimusertib (BAY1895344), a novel ATR inhibitor, demonstrates in vivo activity in ATRX mutated models of uterine leiomyosarcoma. Gynecol Oncol. 2022 Nov 25;168:157-165. doi: 10.1016/j.ygyno. 2022.11.014. Epub ahead of print. PMID: 36442427.
- 4. Kim Y, Kim C, Lee H, Kim M, Zheng H, Lim JY, Yun HI, Jeon M, Choi J, Hwang SW. Gpr83 Tunes Nociceptor Function, Controlling Pain. Neurotherapeutics. 2022 Nov 9. doi: 10.1007/ s13311-022-01327-3. Epub ahead of print. PMID: 36352334.
- 5. Gauhar Z, Tejwani L, Abdullah U, Saeed S, Shafique S, Badshah M, Choi J, Dong W, Nelson-Williams C, Lifton RP, Lim J, Raja GK. A Novel Missense Mutation in ERCC8 Co-Segregates with Cerebellar Ataxia in a Consanguineous Pakistani Family. Cells. 2022 Sep 30;11(19):3090. doi: 10.3390/cells11193090. PMID: 36231052; PMCID: PMC9564319.

Contents covered today

Introduction

- A broad overview of single-cell data and experimental spatially resolved techniques

Computational methodology and frameworks

- Different flavors of currently available spatially resolved data analysis methods

Exponential scaling of single cell sequencing tech.

Recommended review literature on SRT

- Rao A, Barkley D, França GS, Yanai I. <u>Exploring tissue architecture using spatial transcriptomics</u>. Nature. 2021 Aug;596(7871):211-220. doi: 10.1038/s41586-021-03634-9. Epub 2021 Aug 11. PMID: 34381231; PMCID: PMC8475179.
- Longo SK, Guo MG, Ji AL, Khavari PA. Integrating single-cell and spatial transcriptomics to elucidate intercellular tissue dynamics. Nat Rev Genet. 2021 Oct;22(10):627-644. doi: 10.1038/s41576-021-00370-8. Epub 2021 Jun 18. PMID: 34145435.
- Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. <u>An introduction to spatial</u> <u>transcriptomics for biomedical research</u>. Genome Med. 2022 Jun 27;14(1):68. doi: 10.1186/s13073-022-01075-1. PMID: 35761361; PMCID: PMC9238181.
- Moses L, Pachter L. <u>Museum of spatial transcriptomics.</u> Nat Methods. 2022 May;19(5):534-546. doi: 10.1038/s41592-022-01409-2. Epub 2022 Mar 10. Erratum in: Nat Methods. 2022 Apr 19;: PMID: 35273392.
- Lee J, Yoo M, Choi J. <u>Recent advances in spatially resolved transcriptomics: challenges and opportunities.</u> BMB Rep. 2022 Mar;55(3):113-124. doi: 10.5483/BMBRep.2022.55.3.014. PMID: 35168703; PMCID: PMC8972138.

We are witnessing an evolution of Visium last decade

- https://images.app.goo.gl/5jH4HrQoE5VBPksZ9

Visium Resolution 4x

Visium HD Resolution 1,500x

Visium

Visium HD (available soon)

- Successor to Spatial Transcriptomics (ST)
- Approx. 1-10 cells contribute to each spot <u>Not a single-cell resolution!</u>
- Data represented as [spot] x [gene] matrix
- You also get HE images of the same tissue

Generalized toolkits for spatial analysis

- R-based tools
 - ✓ Seurat
 - ✓ STUtility (extended spatial function for Seurat)
 - ✓ Giotto (greater variety of built-in tools for spatial analysis)
 - ✓ SpatialExperiment
- Python-based tools
 - √scanpy
 - ✓ **squidpy** (extended spatial functions for scanpy)
 - ✓ stLearn (integrates spatial distance, tissue morphology and gene expression from spatial data)

Single cell inspired methods Apply existing algorithms developed for single-cell data on spatial data Example: Cluster spatial data and show clusters in space • Factor models for data decomposition Trajectory inference Factor 2 Factor 3 Factor 1 Available algorithms: Seurat scanpy Pseudotime STUtility elocities stLearn **BayesSpace** SpatialExperiment (similar to SingleCellExperiment) etc.

Integration with single cell data

Use single-cell data as a reference when working with spatial data

Why integrate spatial data with single cells?

- 1. Efficient use of resources: Leverage extensive annotation already done for single-cell data
- 2. <u>The problem of low resolution: Mixed cells in Visium</u> <u>spots</u>

Integration with single cell data: mixed cell population

Different methods for integration with single cell data

Marker gene	Anchor	Probabilistic Model	Optimization
Extract marker genes for each cell type from single cell data	Find anchors between single cell and spatial data. Create correction vectors based on expression differences	Assume gene expression follows a certain statistical distribution. Joint model for single cell and spatial data.	Find spatial location where each cell most likely to reside
Compute enrichment score for each set of marker genes in spatial locations	Use correction vectors to integrate two data sets. Transfer labels of single cells to spatial data	Learn cell type parameters from single cell data and use them to deconvolve spatial data	Simultaneously optimize terms such as: • Cell density • UMI distribution • Gene distribution
Moncada <i>et al.</i> , 2020	Seurat	Stereoscope, RCTD, cell2location	Tangram

- Robust cell-type decomposition (RCTD) uses <u>maximum likelihood estimation</u> to identify cell types present on each spatial transcriptomics spot, in addition to estimating cell type proportions
- Robust decomposition of cell type mixture in spatial transcriptomics

Spatially aware methods

Spatially aware methods

Attempts to include knowledge of spatial structure in the analysis, not only to visualize results

- · Identifying spatially variable genes and features
- · Finding spatially coherent expression domains
- Leveraging spatial proximity to increase the robustness of inference
- Finding local correlations between features

Spatially aware methods :: spatially variable genes

- Spatially variable genes (SVGs) are genes with a highly spatially correlated pattern of expression, which varies along with the spatial distribution of a tissue structure of interest
- Standard statistical measures such as Moran's I or Geary's C can be used to rank genes
- SpatialDE, SVCA, and SPARK use probabilistic models
- Essentially, test whether a "spatial" term in the covariance function significantly increases model's ability to explain data

Spatially aware methods :: spatial domain patterns

HMRF (Hidden Markov Random Field)

Normal clustering mainly focus on gene expression

- Leverage spatial information to find spatially coherent clusters (domains)
- Normally use HMRF
 - Construct a graph based on spatial proximity
- The probability of a node (spot) belonging to a specific domain depends on:
 - Agreement with a domain expression profile
 - Coherence with neighbors

Spatially aware methods :: spatial domain patterns

STARCH

- Infers Copy Number Aberrations (CNA) from spatial transcriptomics data
- Increases robustness of inference by aggregating data in the same domains (similar profiles)
- It uses Hidden Markov Random Fields (HMRF)

scHOT

• Computes (spatially) weighted correlations to find local correlations

• It also uses Hidden Markov Random Fields (HMRF)

Computational suites: squidpy

"One framework to rule them all, one framework to find them..."

- It builds on top of scanpy and anndata, from which it inherits modularity and scalability.
- Tailored towards spatial data with support for multiple different experimental platforms (not only Visium)
- Easy to construct spatial graphs and perform graph operations
- Has excellent interface with ML ecosystems such as PyTorch, TensorFlow and sklearn

Snapshots of spatial transcriptomics applications

Take home messages

- ✓ There are tons of spatial techniques
- ✓ An ever-increasing repertoire of computational methods!
 - o A lot of tools out there, but sometimes beneficial to construct custom solutions

✓ Spatial-omics data is already improving our understanding of human health and disease in research, diagnostic, and therapeutic setting

KSBi-BIML 2023

Analysis of Spatially resolved transcriptomics

Welcome to Spatial Transcriptomic session

R/Python script, objects, power point slides and can be downloaded here: https://www.dropbox.com/sh/v4k9hvwlwhab8pz/AAC3ta-o_LdawSGQ_--2UWdDa?dl=0

Steps	File name	Input/Output
chapter 5 single cell reference	BIML_sc_allen_cortex.rds	chapter 5, 6 input
chapter 5 processed visium data	BIML_visium_brain_processed.rds	chapter 5 output
chapter 5 processed visium data	BIML_visium_cortex_processed.rds	chapter 5 output
chapter 6 spacexr doublet mode metadata	BIML_spacexr_cortex_doubletmode.csv	chapter 6 output
chapter 6 spacexr full mode assay	BIML_spacexr_cortex_fullmode.csv	chapter 6 output
chapter 6 spacexr/seurat meta 저장된 visium	BIML_visium_cortex_annotated.rds	chapter 7, 8 input
chapter 7 conda environment info	environment.yml	chapter 7 python environment
chapter 7 anndata	BIML_visium_cortex_anndata.h5ad	chapter 7 input/output
chapter 7 jupyter notebook	BIML_chapter7_squidpy_code.ipynb	chapter 7 python script
chapter 8 visium json	BIML_scalefactors_json.json	chapter 8 input
chapter 8 cellchat prop calculated object	BIML_visium_cortex_prob_cellchat.rds	chapter 8 output
chapter 9 stutility input folder	BIML_visium_STutility_input_files	chapter 9 input
chapter 9 stutility object	BIML_visium_cortex_stutility.rds	chapter 9 output

Input files and python script highlighted with purple should be downloaded before starting analysis Please make a directory for this analysis and save necessary objects at the directory

3. Set the directory before we start analysis

2.

Table of Contents

Chapter 1	What is R programming?
Chapter 2	Then why python?
Chapter 3	What is single cell RNA-seq and spatial transcriptomics?
Chapter 4	What is Space Ranger? Exercise
Chapter 5	Integrative analysis of spatial datasets - Seurat
Chapter 6	Decomposition/Mapping analysis – Seurat/SpaceXR
Chapter 7	Neighborhood analyis and co-occurrence - Squidpy
Chapter 8	Cell-cell interaction - CellChat
Chapter 9	Visualization of blended spatial plot of several features – STutility
Chapter 10	Summary
Chapter 11	Q&A

3

1. What is R programming?

Single-cell transcriptomics

Examines the gene expression level of individual cells in a given population by simultaneously measuring the RNA concentration (conventionally only messenger RNA (mRNA)) of hundreds to thousands of genes.

https://www.10xgenomics.com/single-cell-technology

Spatial transcriptomics

Since Visium Spatial Gene Expression is a spatial transcriptomics solution, you can analyze the transcriptome within the tissue context.

Visium Spatial Gene Expression works with cell capture slides that contain four capture areas with 5,000 barcoded spots. These barcoded spots include capture oligonucleotides that bind to the RNA in the tissue.

https://www.10xgenomics.com/spatial-transcriptomics

4. What is Space Ranger
What is Space Ranger?

- Space Ranger is a set of analysis pipelines for processing 10X Genomics Visium sequence data (FASTQ files) with high resolu tion microscope images of tissue.
- It maps the transcriptomic reads to the microscope image of the tissue
- We will introduce spaceranger count pipeline

Installing Space Ranger

1. Download and unpack the Space Ranger .tar.gz file in any location

2. Download and unpack proper reference data .tar.gz file in a convenient location

\$tar -xzvf refdata-gex-GRCh38-2020-A.tar.gz

3. Pre-pend the Space Ranger directory to your \$PATH

\$export PATH=/opt/spaceranger-2.0.0:\$PATH

https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/installation

Run spaceranger count command # Terminal \$cd /home/jdoe/runs \$spaceranger count --id=sample345 \ #Output directory --transcriptome=/home/jdoe/refdata/GRCh38-2020-A \ #Path to Reference --sample=mysample \ #Sample name from FASTQ filename --image=/home/jdoe/runs/images/sample345.tiff \ #Path to brightfield image --slide=V19J01-123 \ #Slide ID --area=A1 \ #Capture area --localcores=8 \ #Allowed cores in localmode --localmem=64 #Allowed memory (GB) in localmode https://support.10xgenomics.com/spatial-gene-expression/software/pipelines/latest/using/count Input : the microscope image (.tiff), FASTQ files(Fastq) Perform : sequence alignment, tissue detection Output : gene-spot matrix

DLPFC_Br8492_pos	st_manual_align	ment
4,61 Number of Spots U	8 Jnder Tissue	Spots @
48,988 Mean Reads per Spot	1,137 Median Genes per Spot	
Sequencing _③		
Number of Reads	226,227,723	
Valid Barcodes	96.8%	1
Valid UMIs	100.0%	
Sequencing Saturation	95.2%	
Q30 Bases in Barcode	94.0%	11
Q30 Bases in RNA Read	93.3%	
nttps://imweber.org/051A-book/space-ranc	jer-visium.ntmi	

Web summary .html file

Metrics	Definition	Expected/Recommended value		
Number of Spots Under Tissue	The number of barcodes associated with a spot under tissue.	S		
Mean Reads per Spot	The number of reads, both under and outside of tissue, divided by the number of barcodes associated with a spot under tissue.	Recommended: 50,000 Vary by sample, and low values are not necessa rily indicative of a failed experiment		
Median Genes per Spot	The median number of genes detected per spot under tissue-asso ciated barcode. Detection is defined as the presence of at least 1 UMI count.			
Number of reads	Total number of read pairs that were assigned to this library in demultiplexing.	Fresh frozen libraries: a minimum of 50k FFPE v1 libraries: a minimum of 25k		
Valid Barcodes	Fraction of reads with barcodes that match the whitelist* after barc ode correction	Expected >75%		
Valid UMIs	Fraction of reads with valid UMIs	Expected >75%		
Sequencing Saturation	The fraction of reads originating from an already-observed UMI	Dependent upon sequencing depth and sample complexity (at last 60-80 % in most applications)		
Q30 bases in barcode, Sample I ndex, or UMI	Fraction of tissue-associated barcode, Sample Index, or UMI base s with Q-Score >= 30, excluding very low quality/no call (Q \leq 2) bas es from the denominator	Sequencing platform dependent (Most Illumina runs generate >70-80% Q30 data)		

https://lmweber.org/OSTA-book/space-ranger-visium.html

What is a Loupe Browser?

- Loupe Browser is a desktop application from 10x Genomics that allows to visualize gene expression data without having to write code
- Align gene expression spots to histological images, look for mar ker gene expression, annotate populations, and cluster
- The .cloupe file is the one that need to import into the Loupe Bro wser
- Generally, 1~2 GB each

Loupe Browser

Download R packages to be used in analysis

install.packages("ggplot2") install.packages("devtools") install.packages("remotes") install.packages("dplyr") install.packages("anndata") install.packages("cowplot") install.packages('Seurat') devtools::install_github('satijalab/seurat-data') devtools::install_github("thomasp85/patchwork") devtools::install_github("dmcable/spacexr", build_vignettes = FALSE) remotes::install_github("jbergenstrahle/STUtility") remotes::install_github("sqjin/CellChat")

Load packages

library(ggplot2)
library(devtools)
library(remotes)
library(dplyr)
library(anndata)
library(cowplot)
library(SeuratData)
library(seuratData)
library(patchwork)
library(sTUtility)
library(cellchat)
#For reproducibility se the seed
set.seed(1234)

5. Integrative analysis of spatial datasets - Seurat

Dataset Description

We will be using a recently released dataset of sagital mouse brain slices generated using the Visium v1 chemistry.

There are two serial anterior sections, and two (matched) serial posterior sections.

Biological annotations of spots (i.e., cell group information) are predicted using Seurat (https://satijalab.org/seurat/articles/spatial_vignette.html).

Load Brain data

You need to specify exact directory
setwd("biml 2023")

We can easily download the data with functions below
options(timeout=600)
InstallData("stxBrain")

brain <- LoadData("stxBrain", type = "anterior1")
Same with
brain = LoadData("stxBrain", type = "anterior1")</pre>

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors

Explore Seurat object

brain

> brain An object of class Seurat 31053 features across 2696 samples within 1 assay Active assay: Spatial (31053 features, 0 variable features) 1 image present: anterior1

Explore metadata

brain@meta.data %>% head(3)

> brain@meta.data %>% head(3)

	orig.ident	nCount_Spatial	nFeature_Spatial	slice	region
AAACAAGTATCTCCCA-1	anterior1	13069	4242	1	anterior
AAACACCAATAACTGC-1	anterior1	37448	7860	1	anterior
AAACAGAGCGACTCCT-1	anterior1	28475	6332	1	anterior

Load and preprocessing Visium ******* Load and preprocessing single cell ********* Find TransferAnchors

metadata	explanation			
nCount_Spatial	the total number of detected molecules in each sample			
nFeature_Spatial	the number of unique genes in each sample			
slice	name of the stored image			

27

Explore coordinates

brain@images\$anterior1@coordinates %>% head(3)

Load and preprocessing Visium Load and preprocessing single cell Find TransferAnchors

<pre>> brain@images\$anterior1@coordinates %>% head(3)</pre>								
	tissue	row	col	imagerow	imagecol			
AAACAAGTATCTCCCA-1	1	50	102	7475	8501			
AAACACCAATAACTGC-1	1	59	19	8553	2788			
AAACAGAGCGACTCCT-1	1	14	94	3164	7950			

metadata	explanation
tissue	Binary, indicating if the spot falls inside (1) or outside (0) of tissue
row	The row coordinate of the spot in the array from 0 to 77
col	The column coordinate of the spot in the array
imagerow	The row pixel coordinate of the center of the spot in the full resolution image.
imagecol	The column pixel coordinate of the center of the spot in the full resolution image.

Spatial Dimplot of some cluster

facet.highlight: split each group into its own plot

SpatialDimPlot(brain, cells.highlight = CellsByIdentities(object = brain, idents = c(2, 1, 4, 3, 5, 8)), facet.highlight = TRUE, ncol = 3)

Transfer annotation

Integrate single cell and visium spatial gene expression data

Elucidate spatiality in single cell data and improve resolution in Visium data

Problem

Single Cell RNAseq methods resolve gene expression at the single cell level, but lose the spatial context. Visium spatial gene expression maintains spatial information, but the resolution of each spot is limited (1-10 cells).

Solution

- Deconvolution (Identify the cell types and their relative proportions contributing to a spot)
- Mapping (Assign the most likely dominant cell type to a spot)

Load and preprocessing Visium ______ Load and preprocessing single cell •••••• Find TransferAnchors ••••••• Transfer annotation

Load reference single cell data

DimPlot(allen reference, group.by = "subclass", label = TRUE)

Insert the prediction assay into the cortex object

Created prediction assay

cortex[["predictions"]] = predictions.assay DefaultAssay(cortex) = "predictions"

SpatialFeaturePlot(cortex, features = c("L2/3 IT", "L4"), pt.size.factor = 1.6, ncol = 2, crop = TRUE)

Spatial Feature Plot of predicted cell type proportion

pdf('./integreated spatialfeautrePlot.pdf', width = 10, height = 5) SpatialFeaturePlot(cortex, features = c("Astro", "L2/3 IT", "L4", "L5 PT", "L5 IT"), pt.size.factor = 1, ncol = 5, crop = FALSE, alpha = c(0.1, 1)) SpatialFeaturePlot(cortex, features = c("Astro", "L2/3 IT", "L4", "L5 PT", "L5 IT"), pt.size.factor = 1, ncol = 5, crop = T, alpha = c(0.1, 1)) dev.off()

Transfer annotation oad and preprocessing VIsium Load and preprocessing single cell Find TransferAnchors **Transfer annotation** # We also get predicted cell type metadata for each spot predictions = TransferData(anchorset = anchors, refdata = allen_reference\$subclass,weight.reduction = cortex[["pca"]], dims = 1:30) cortex = AddMetaData(cortex, metadata = predictions) cortex\$predicted.id <- factor(cortex\$predicted.id)</pre> cortex <- SetIdent(cortex, value="predicted.id")</pre> SpatialDimPlot(cortex, label = T, label.size = 3) ident Astro L2/3 IT • L5 IT • L5 PT L6 CT • L6 IT L6b Macrophage • Oligo VLMC 41

Remove all objects before starting next chapter

rm(allen_reference)
rm(brain)
rm(cortex)
rm(anchors)
rm(predictions);
<pre>rm(predictions.assay);</pre>
gc()

Process single cell for RCTD input Process spatial for RCTD input Run RCTD Process output for deconvolution

RCTD Algorithm

RCTD(**R**obust **c**ell **t**ype **d**ecomposition) Method that **decomposes cell type mixtures** using cell type profiles learned from single-cell RNA-seq

1.Calculates **the mean gene expression profile of each cell type** within the scRNAseq reference

2.By fitting each spatial transcriptomics **spot** as a linear combination of individual cell types, RCTD generates a spatial map of cell types

The gene expression of each cell type for a given spot is estimated by fitting a statistical model to observed gene counts, which are assumed to follow Poisson distributions.

3. This model is also optimized with MLE

decomposition of cell type mixtures in spatial transcriptomics

Process single cell for RCTD input — Process spatial for RCTD input Run RCTD Process output for deconvolution

Process spatial dataset for RCTD input

```
brain = readRDS("./BIML_visium_brain_processed.rds")
spatial_counts_brain = brain@assays$Spatial@counts
spatial_nUMI_brain = colSums(spatial_counts_brain)
coords_brain = brain@images$anterior1@coordinates[,c("col","row")]
puck brain = SpatialRNA(coords brain, spatial counts brain, spatial nUMI brain)
```

Process single cell for RCTD input — Process spatial for RCTD input — Run RCTD Process output for deconvolution

Running RCTD (Full mode, Doublet mode)

Doublet mode: Fits at most two cell types per pixel. Classifies each pixel as 'singlet' or 'doublet' and searches for the cell types on the pixel.

Full mode: Fit any number of cell types on each pixel # Each process takes 30 min ~ 1 hour

```
RCTD brain = create.RCTD(puck brain, allen reference, max cores = 8)
RCTD brain = run.RCTD(RCTD brain, doublet mode = 'full')
RCTD brain doublet = run.RCTD(RCTD brain, doublet mode = 'doublet')
```

Save RCTD results file

```
# We need to normalize the decomposed matrix
RCTD results = sweep(RCTD brain@results$weights, 1,
                     rowSums(RCTD brain@results$weights), '/')
write.csv(RCTD_results, "./BIML_spacexr_cortex_fullmode.csv")
write.csv(RCTD brain doublet@results$results df,"./BIML spacexr cortex doubletmode.c
sv")
```

Process single cell for RCTD input _____ Process spatial for RCTD input _____ Run RCTD Process output for deconvolution

Processs RCTD decomposed file (full mode)

```
full_rctd = read.csv("./BIML_spacexr_cortex_fullmode.csv", header = TRUE,
row.names = 1)
colnames(full rctd) = gsub("weights.","", colnames(full rctd))
brain[['RCTD']] = CreateAssayObject(counts = t(as.matrix(full_rctd)))
DefaultAssay(brain) = "RCTD"
```

Processs RCTD decomposed file (doublet mode)

```
doublet rctd <- read.table("./BIML spacexr cortex doubletmode.csv", sep=",",</pre>
header=TRUE)
spacexr_metadata <- doublet_rctd[,c("X", "first type")]</pre>
colnames(spacexr metadata) <- c("barcodes", "spacexr first type")</pre>
rownames(spacexr_metadata) <- spacexr_metadata$barcodes;
spacexr metadata$barcodes <- NULL</pre>
brain <- AddMetaData(brain, spacexr metadata)</pre>
brain <- SetIdent(brain, value="spacexr_first_type")</pre>
```

Spatial map of predicted cell type proportions by RCTD

Process single cell for RCTD input _____ Process spatial for RCTD input _____ Run RCTD ____ Process output for deconvolution

pdf("./RCTD decomposed Spatial Featureplot.pdf", height=15, width=25) SpatialFeaturePlot(brain, features =rownames(brain),ncol=8, pt.size.factor = 1.6, crop = TRUE) dev.off()

Spatial map of predicted cell type proportions by RCTD

```
cortex = subset(brain, seurat clusters %in% c(1, 2, 3, 4, 6, 7))
cortex = subset(cortex, anterior1_imagerow > 400 | anterior1_imagecol < 150, invert = TRUE)
cortex = subset(cortex, anterior1_imagerow > 275 & anterior1_imagecol > 370, invert = TRUE)
cortex = subset(cortex, anterior1_imagerow > 250 & anterior1_imagecol > 440, invert = TRUE)
SpatialDimPlot(cortex)
```

This file will be used in the Squidpy and CellChat Analysis

saveRDS(cortex, "./BMIL_visium_cortex_annotated.rds")

Remove all objects before starting next chapter

rm(brain)
<pre>rm(spatial_counts_brain)</pre>
rm(spatial_nUMI_brain)
rm(coords_brain)
rm(nUMI_brain)
rm(puck_brain)
rm(barcodes_brain)
rm(RCTD_brain)
rm(RCTD_brain_doublet)
rm(RCTD_results)
rm(full_rctd)
rm(doublet_rctd)
rm(spacexr_metadata)
rm(cortex)
gc()

7. Neighborhood Analysis of Co-occurrence - Squidpy

Install squidpy Convert /Load data Neighborhood enrichment analysis Co-occurrence analysis

Install Squidpy via conda

We assume that conda is already installed on your laptop/computer

Instruction below starts from installing jupyter notebook. If you have equivalent platform for visualizing result plots, **just follow black parts**

- 1. Open your terminal and move to the directory 'biml_2023' where we downloaded all files for the exercise
- 2. Type conda env create -f environment.yml to create conda environment named squidpy
- 3. Type python -m pip install -upgrade pip
- 4. Type python -m pip install jupyter
- 5. Type conda activate squidpy
- 6. Type conda install -c anaconda ipykernel
- 7. Typepython -m ipykernel install --user -name=squidpy
- 8. Type conda deactivate
- 9. Type jupyter notebook
- 10. Change kernel to squidpy like the image

Save spatial information in adata.obsm

In Python

make an array having spatial coordinates

```
spatial info = adata.obs[['row', 'col']].values.tolist()
adata.obsm['spatial'] = np.array(spatial info)
```

adata

AnnData object with n_obs × n_vars = 1073 × 16019 AnnData object with n_obs × n_vars = 10/3 × 16019 obs: 'orig.ident', 'nCount_Spatial', 'nFeature_Spatial', 'slice', 'region', 'nCount_SCT', 'nFeature_SCT', 'SCT_sn n_res.0.8', 'seurat_clusters', 'manual_annotation', 'predicted.id', 'prediction.score.Vip', 'prediction.score.Lamp5', 'prediction.score.Sst', 'prediction.score.Sncg', 'prediction.score.Serpinf1', 'prediction.score.Pvalb', 'prediction.s core.Endo', 'prediction.score.Peri', 'prediction.score.L6.CT', 'prediction.score.L6b', 'prediction.score.L6.IT', 'pre diction.score.L2.3.IT', 'prediction.score.CR', 'prediction.score.L5.PT', 'prediction.score.NP', 'prediction.score.L 4', 'prediction.score.L5.IT', 'prediction.score.Oligo', 'prediction.score.Meis2', 'prediction.score.Astro', 'prediction.score.Net', 'prediction.score.T', 'prediction.score.YuMC', 'prediction.score.SMC', 'prediction.score.max', 'spacexr_first_type', 'tissue', 'row', 'col', 'imagerow', 'imagecol' obsm: 'spatial'

Install squidpy ——— Convert /Load data ——— Neighborhood enrichment analysis ••• Co-occurrence analysis

57

Builds a spatial graph

In Python

sq.gr.spatial neighbors(adata)

Adjacency matrix adata.obsp["spatial connectivities"]

Weighted Adjacency matrix adata.obsp["spatial distances"]

Build spatial graph with observations(= spots) as nodes and neighbor-hood relations between observations as edges.

To identify neighbors, spatial coordinates of spots are used.

59

Calculate enrichment score based on spatial graph

In Python

sq.gr.nhood enrichment(adata, cluster key="spacexr first type")

Enrichment score is calculated based on permutation-based test involving spatial graph.

If spots belonging to two different clusters are often close to each other, then they will have a high score and can be defined as being *enriched*.

Visualize neighborhood enrichment and select the pair

In Python

sq.pl.nhood enrichment(adata, cluster key="spacexr_first_type")

7. Cell-cell interaction analysis - Cellchat

What is CellChat?

CellChat is an useful tool to **quantitatively infer and analyze intercellular communication networks** from single-cell RNA-sequencing data and spatial transcriptomics data.

Requires **gene expression** and **spatial location data** of spots/cells as the user input and mo dels the probability of cell-cell communication by integrating gene expression with spatial dist ance as well as prior knowledge of the interactions between signaling ligands, receptors and t heir cofactors.

erence and analysis of cell-cell communication using CellChat. Nature communications, 2021, 12.1: 1-20. bio/?https://github.com/sqjin/CellChat/blob/master/tutorial/CellChat_analysis_of_spatial_imaging_data.html

Lo	ad dataset		Preproce	essing	Inference	of cell-cell c	ommunication n	etwork	Visualization I	network
	Creat	A a	Cell	Chat oh	iect					1
	orcat	e u	Cin	Shat on	1001					
	# Create a C	CellChat	object for	the downstream	analysis.					
	cellchat "labels" scale.fa	= cr , dat ctors	eateCel atype =)	llChat(obje = "spatial"	ct = data , coordin	a.input, m nates = s	meta = meta, patial.locs,	group.by scale.fac	= tors =	
	cellchat									
	> cellchat									
	An object of 16019 genes 1073 cells	f class s.	CellChat	t created from	a single d	lataset				
	CellChat and	alysis	of spatia	al data! The i	nput spatia	l locations	are			
			x_cent y	y_cent						
	AAACAGAGCGAG	CTCCT-1	3164	7950						
	AAACCGGGTAG	GTACC-1	6517	3407						
	AAACCGTTCGTC	CCAGG-1	7715	4371						
	AAACTCGTGAT	ATAAG-1	4242	9258						
	AAAGGGATGTAG	GCAAG-1	4362	5747						
	AAATAACCATAO	CGGGA-1	3164	7537						
16										
1										
	Contraction and									
		Times								
			1h						69	
									00	
Lo	ad dataset		Preproce	essing	Inference	of cell-cell c	ommunication n	etwork	Visualization I	network
										N. Mark
	Sot th		aano	-recent	or int	oractic	on datak	200		1.
1	JCL		yanu	1-1 てしてりし		σιαιίι	JII UALAL	Jajc 🔪		100 million 100 million

CellChatDB = CellChatDB.mouse
cellchat@DB = CellChatDB

CellChatDB : Manually curated database of literature-supported ligand-receptor interactions in both **human and mouse**.

Since our toy data is a mouse brain 10x visium data, we load CellChatDB.mouse

- 65 -

Download spaceranger output Construct STutility object Blended Spatial Feature Plot

Download dataset for STutility

Terminal

\$ curl -O https://cf.10xgenomics.com/samples/spatialexp/1.0.0/V1_Mouse_Brain_Sagittal_Anterior/V1_Mouse_Brain_Sagittal_Anterior_filtered_feature_bc_matrix .h5 # download \$ curl -O https://cf.10xgenomics.com/samples/spatialexp/1.1.0/V1 Mouse Brain Sagittal Anterior/V1 Mouse Brain Sagittal Anterior spatial.tar.gz

\$ tar -xvzf V1_Mouse_Brain_Sagittal_Anterior_spatial.tar.gz

Reference

Space Ranger

Zheng, Grace X.Y., Terry, Jessica M., [...] Bielas, Jason H. (2017). Massively parallel digital transcriptional profiling of single cells. *Nature Communications*. 8: 1-12, <u>doi:10.1038/ncomms14049</u>

Seurat

Hao Y, Hao S, Andersen-Nissen E, III WMM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zagar M, Hoffman P, Stoeckius M, Papalexi E, Mimitou EP, Jain J, Srivastava A, Stuart T, Fleming LB, Yeung B, Rogers AJ, McElrath JM, Blish CA, Gottardo R, Smibert P, Satija R (2021). "Integrated analysis of multimodal single-cell data." Cell. doi:10.1016/j.cell.2021.04.048, https://doi.org/10.1016/j.cell.2021.04.048

SpaceXR

Cable, Dylan M., et al. "Robust decomposition of cell type mixtures in spatial transcriptomics." Nature Biotechnology 40.4 (2022): 517-526.

Squidpy

Palla, G., Spitzer, H., Klein, M. et al. Squidpy: a scalable framework for spatial omics analysis. Nat Methods 19, 171–178 (2022). https://doi.org/10.1038/s41592-021-01358-2

CellChat

Jin, S., Guerrero-Juarez, C.F., Zhang, L. *et al.* Inference and analysis of cell-cell communication using CellChat. *Nat Commun* **12**, 1088 (2021). <u>https://doi.org/10.1038/s41467-021-21246-9</u>

Stutility

Bergenstråhle, J., Larsson, L. & Lundeberg, J. Seamless integration of image and molecular analysis for spatial transcriptomics workflows. BMC Genomics 21, 482 (2020). https://doi.org/10.1186/s12864-020-06832-3

