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PART 1
Rl R

Why Learning Drug Representation is Difficult?

* (Issue 1) Compound graph size vary significantly, which is
quite difficult to deal with using GNN.

* (Issue 2) Drug has quite a number of properties and learning
drug representation is intrinsically multi-task learning.

e Considering two issues together, it is really an open problem
to learn drug representation. These challenges are
recurring in this lecture.
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Learning Drug-Target Interaction

e Given that learning drug representation is difficult, it
becomes even more difficult to learn drug-target interaction
(DTI) because

* Drug representation needed to be learned.
e Representation of target proteins needs to be learned.

* Well, another very complicating factor.

e DTl should consider what happens after a drug targets a
protein (gene) because genes function as a group in a
very complex interaction.

Summary: Drug-Target Interaction




True DTIl: Compound-Protein-Cell

Drug Re-positioning is Learning
Representation of Heterogenous Networks.

* Drug repositionign is to discover unknown association between
drug and disease.

* Association between drug and disease is to discover distant
relationship.

* Thus, we need help!

* Forutnately, we can use gene networks for this.

* Weel, this becomes to learn representation of three heterogenous
networks: drug — gene — disease.




PART 2
Preliminary of Graph Learning

Contents

* What is Graphs?

* Example of Graphs in Bioinformatics

* Preliminary
* Random Walk-Based Node Embedding

* Network Propagation

* Network Centralities / Clustering
* VAE / Collective VAE

* Matrix Factorization

* Graph Neural Network




What is Graph?

* General concept of graph

* Example of graphs in Bioinformatics

Graph

* [Mathematics] A structure made of vertices and edges, G=(V, E)

* [Abstract Data Type] An abstract data type representing relations or connections

country

USA

A lot of real-world data does not “live” on grids g
university o
Mrkhu-laaryﬂvu;tov | Scucsted. Vaganova Academy [-‘1‘».).2, P
Social networks P e - S
Citation networks - “‘ == Yo
Communication networks Knowledge graphs U L
Multi-agent systems -
°
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o o * ©
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Protein interaction
networks

Road maps

*slide from Thomas Kipf, University of Amsterdam




Example of Graphs in Bioinformatics
- related to DTI & DR

* Relationships between genes, drugs, or diseases
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Drug-Disease Network

Biological Pathway

Example of Graphs in Bioinformatics
- related to DTI & DR

* PPl network & Biological pathway
* Represents biological mechanisms via gene interactions
* Can be utilized for learning states of data (ex. patient, cell-line, ...)

* Roles in the DTI & DR tasks
* Identification of patients or cell-lines through multi-omics data

* Bridge between drugs and disease

Gene involved_in Disease
Association score (0-1) Protein-Protein Interaction
> (PPI) Network
encoded_by ; has_indication Py
‘ "
binds_to L
Activity value (1nM — 1x10"9nM)
g
Protein Small Molecule L

Biological Pathway

(Mullen, Joseph, et al., PloS One, 2016)




Example of Graphs in Bioinformatics
- related to DTI & DR

* Molecular Graph
Represents information of drug or small molecule itself
* Atom types, Bond types, Atom-Atom distance, Bond-Bond angles, ...

Roles in the DTI & DR tasks
Used as inputs for learning drug’s structure, function, properties, ..
Used as ingredients for calculating drug-drug similarities

w

Hit

Bioactivity Database

(https://www.intechopen.com/chapters/52373)

Molecular Graph

Example of Graphs in Bioinformatics
- related to DTl & DR

* Drug, Gene, Disease Network
* Association between drugs, genes, and diseases

Roles in the DTI & DR tasks
Main inputs for learning drug targets and repurposing diseases

DTI: which drugs and genes interact?
DR: which drugs are used for other diseases?

Drug-disease association

Discover novel or new targets of approved drugs

oo P
Drug-Drug Network

: :

Drug-Disease Network




Preliminary for Graph Learning

Random Walk-based Node Embedding
Network Propagation

Network Centralities / Clustering

VAE / Collective VAE

Matrix Factorization

Graph Neural Network

Random Walk-based Node Embedding




Random walk

* An agent in the graph moves “randomly” along the graph topology to explore
different nodes.

#

Random walk

* An agent in the graph moves “randomly” along the graph topology to explore
different nodes.

Is it really random?

x




Random walk

* An agent in the graph moves “randomly” along the graph topology to explore
different nodes.

Is it really rai g@®m?

According to probabilities!

)

Random walk

* An agent in the graph moves “randomly” along the graph topology to explore
different nodes.

Is it really rai ggm?

According to probabilities!

R

“drug-drug similarity”
“co-expression”
“drug-disease association”




Random walk-based Node Embedding

* Inspired by word embedding in natural language processing
* word2vec: learn word representations by co-occurrence in the sentences

* Predict context words using a center word

Example of word2vec input

Source Text

fox jumps over the
The fox jumps over the

| The | quick- fox ‘ jumps | over the

The | quick| brown . jumps \ over ‘ the

lazy dog.

lazy dog.

lazy dog.

lazy dog.

Training
Samples

(the, quick)
(the, brown)

(quick, the)
(quick, brown)
(quick, fox)

(brown, the)
(brown, quick)
(brown, fox)
(brown, jumps)

(fox, quick)
(fox, brown)
(fox, jumps)
(fox, over)

(http://mccormickml.com/2016/04/19/word2vec-tutorial-
the-skip-gram-model/)

Example of word embedding (by

similarity)
Canple |

orange rice
milk
banana

bus

(e

(Li, Bofang, et al., Data Science and Engineering, 2019)

Random walk-based Node Embedding

* How to get the sentences from a graph?

e Random walk!

x

=

A>B >DDE>G
A>DDEDFDIDDEDG
A>B>COHDG
A>DDEDG




Random walk-based Node Embedding

* How to get the sentences from a graph?
* Random walk!

X A>B SDIEDG
E$|A9D%E9F9D%EQG
A>B>C>H>G

A>D>E>G
: Y
W>D>E>F>D>E>G
YN

ASB>E>F>D>E>G

& YN N

A>D>E>F>D>E>G

Make sentences by considering
node co-occurrences

Random walk-based Node Embedding

* DeepWalk
* Generate node embeddings using random walks

) ‘ °s )
s ’ °t .
-08- Hga ® o
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-10 e o ®
P E ... s
: -1.4
‘ -\. -16
—e -18p g ” : ; . '
\ -1.0 0.5 0.0 05 10 L5 20 25
(a) Input: Karate Graph (b) Output: Representation

(Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena., ACM SIGKDD, 2014.)




Random walk-based Node Embedding

» Exploration of graph
» DFS: Depth-First Search
+ BFS: Breadth-First Search

Figure 1: BFS and DFS search strategies from node u (k = 3).

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

Random walk-based Node Embedding

» Exploration of graph with different probabilities

The walk just transitioned from t to v and is now evaluating its next step out
of node v.

» Edge labels indicate search biases «.

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)




Random walk-based Node Embedding

» Exploration of graph with different probabilities

» The walk just transitioned from t to v and is now evaluating its next step out
of node v.

+ Edge labels indicate search biases «a.

p=q=1
(special case; DeepWalk)

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

Random walk-based Node Embedding

» Exploration of graph with different probabilities

» The walk just transitioned from t to v and is now evaluating its next step out
of node v.

» Edge labels indicate search biases «.

p=q=1
(special case; DeepWalk)

1
p>q 5
(More explore)

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)




Random walk-based Node Embedding

» Exploration of graph with different probabilities

» The walk just transitioned from t to v and is now evaluating its next step out
of node v.

+ Edge labels indicate search biases «a.

p=q=1
(special case; DeepWalk)

p<q
(walk local)

p>q
(More explore)

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

Random walk-based Node Embedding

» Exploration of graph with different probabilities

» The walk just transitioned from t to v and is now evaluating its next step out
of node v.

» Edge labels indicate search biases «.
‘node2vec”

p=q=1
(special case; DeepWalk)

p<q
(walk local)

p>q
(More explore)

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)




Random walk-based Node Embedding

» Exploration of graph with different probabilities

» The walk just transitioned from t to v and is now evaluating its next step out
of node v.

+ Edge labels indicate search biases «a.
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Network Propagation




Network Propagation

« Random walks are generated by transition probabilities.

* The number of random walks is the number of samples used by the model
(DeepWalk, node2vec).

* So what if we create an infinite number of random walks of a certain
length from one starting point and then measure the frequency of nodes
observed in the walks?

Network Propagation

* Propagate information of known nodes (= seeds) via network topology
* Until certain steps, the amount of information (or flow) will be converged

(Cowen, Lenore, et al., Nature Reviews Genetics, 2017)




Network Propagation

* Propagate information of known nodes (= seeds) via network topology
» Until certain steps, the amount of information (or flow) will be converged

« Random walk with re-start (RWR)
p(t+1)=axp(0)+ (1 —a) X W X p(t)

(Cowen, Lenore, et al., Nature Reviews Genetics, 2017)

Advantages of Network Propagation

* Looking at more distant neighbours that are up to two steps away (yellow;
middle panel) again introduces many false positives.

* Network propagation overcomes these problems by simultaneously
considering all paths between genes (yellow; right panel).

Direct neighbour Shortest path Network propagation

(Cowen, Lenore, et al., Nature Reviews Genetics, 2017)




Advantages of Network Propagation

» Network propagation considers and aggregates influence of all seeds via
network topology

It can capture informative clusters of interest

© Profile 1
O Profile 2
© Both

Before propagation After propagation

(Cowen, Lenore, et al., Nature Reviews Genetics, 2017)

Advantages of Network Propagation

* Propagation of the signal from any of the three known disease genes
(red) ranks the other known disease genes very highly, owing to the
many paths between them.

* Genes in yellow are ranked highly by alternative network analysis
methods (which consider direct neighbours or shortest paths); however,

these are false positives.
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Network Centralities / Clustering

Network Centralities

* Centrality assign numbers or rankings to nodes within a graph corresponding to
their network position.

* "What characterizes an important vertex?” - How to define “important”?

A B
Centrality and hubs Degree centrality Betweenness centrality Closeness centrality
o—@ O o
Highest DC i CI) Highest BC Highest CC g (@]
Connector hub . . - . . % O
Provincial ubs Eigenvector centrality Participation coefficient PageRank &
i
Q —Q - O
= {
/ ) —O_ a)_ —0
@- Highest PC O u@:gl_ﬁ_' -

Farahani, Farzad V., Waldemar Karwowski, and Nichole R. Lighthall. "Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review." frontiers in
Neuroscience (2019)




Network Centralities

1. Degree Centrality
- defined as the number of links incident upon a node

2. Closeness Centrality
- is the average length of the shortest path between the node and all other nodes in the graph.

3. Betweenness Centrality
- the number of times a node acts as a bridge along the shortest path between two other nodes.

4. Eigenvector Centrality
- Measure of the influence of a node in a network.
- Measured by calculating the eigenvector of adjacency matrix
- Google's PageRank is based on the normalized eigenvector centrality

Farahani, Farzad V., Waldemar Karwowski, and Nichole R. Lighthall. "Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review." frontiers in
Neuroscience (2019)

Network Centralities

Different scores are assigned for different centralities

- Acentrality which is optimal for one application is often
sub-optimal for a different application.

- The optimal measure depends on the network structure of
the most important vertices

- Complex networks (e.g. disease networks) have
heterogeneous topology; ranking its nodes with centrality
possesses limitations [2].

Least central Most central

[1] Wikipedia: Network Centrality (https:/en.wikipedia.org/wiki/Centrality#/media/File:Wp-01.png, retrieved 2022-11-15)
[2] Lawyer, Glenn. "Understanding the influence of all nodes in a network." Scientific reports 5.1 (2015): 1-9.




Network Clustering

Disease are interplay of multiple molecular processes
- Disease-associated proteins interact with each other and cluster to form disease modules
- Network clustering methods are utilized for detecting communities and modules

""'® @ Peroxisomal disorders (PD)
(7 & Rheumatoid arthritis (RA)

» 0 AT

Menche, Jérg, et al. "Uncovering disease-disease relationships through the incomplete interactome." Science 347.6224 (2015): 1257601.

Network Clustering

Widely-used Network clustering algorithms
1. k-means clustering
- partitions the graph into k clusters based on the location of the nodes such that their distance from the
cluster’s mean (centroid) is minimum
- The distance is defined using various metrics as Euclidean distance, Euclidean-squared distance,
Manhattan distance, or Chebyshev distance.

k-means clustering Hierarchical clustering

yworks: Clustering Graphs and Networks, https://www.yworks.com/pages/clustering-graphs-and-networks)




Network Clustering

Widely-used Network clustering algorithms
2. Hierarchical clustering
- Partitions the graph into a hierarchy of clusters.
- The resultis a dendrogram which can be cut based on a given cut-off value.

k-means clustering Hierarchical clustering

yworks: Clustering Graphs and Networks, https://www.yworks.com/pages/clustering-graphs-and-networks)

Network Clustering

* Limitations of disease module-based approaches
- available interactome and disease-related gene information are incomplete, and do have sufficient coverage to
map out disease modules
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Menche, Jérg, et al. "Uncovering disease-disease relationships through the incomplete interactome." Science 347.6224 (2015): 1257601.




VAE / Collective VAE

Variational Auto-Encoder (VAE)

* A generative model that reconstructs input data from latent variables

é‘{ : (i) (i) ' éf
' %(Z‘x ) Py(x |Z) :
Input Output
Learn variational distribution
o4
p ¢ (’“’ ) Sampling from the latent variables

Prior distribution of the latent variables Z

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes."
arXiv preprint arXiv:1312.6114 (2013).




Variational Auto-Encoder (VAE)

* A generative model that reconstructs input data from latent variables

< Inference Model > < Generative Model >

Latent
variables

Input Encoder Decoder Output

Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes."
arXiv preprint arXiv:1312.6114 (2013).

Collective VAE

* Proposed model for item recommendation
* Simultaneously recover user ratings (main task) and side information
e Canbe utilized for DTI & DR isccesssssssssnsssssssscss

! ]
* Main task: drug-disease association ! Inference network 1
* Side Information: drug information

]

iy
7
OO
4
HOl®
/

o
)

Figure 1: Collective Variational Autoencoder

(Chen, Yifan, and Maarten de Rijke, Proceedings of the 3rd workshop on deep
learning for recommender systems, 2018.)




Matrix Factorization

Matrix Factorization

» Aclass of collaborative filtering algorithms used in recommender systems.

* Decompose a matrix into tow lower dimensional matrices
* Learn low dimensional latent embeddings of row/column

A~UVT

AeRm™mn  [yJeRmxXd yeR™  mn>d

o 235 Bl T

Harry Potter The Tripletsof  Shrek The Dark Memento
‘ Belleville Knight Rises
R v R v
v
B v v v
[
s 4

https://developers.google.com/machine-learning/recommendation/collaborative/matrix




Matrix Factorization

« Minimize difference of A and UVT

min > (A — (UL, V)))?

mxd nxd
UeR™, VeR™ ;6=

E, T
. a {iupLETTES @ sELLewlE m-

Harry Potter The Triplets of Shrek The Dark Memento
A Belleville Knight Rises
v v v )
' < v ~ 1 o
|
v v v , O
u N
v v :

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Matrix Factorization

« Minimize difference of 4 and UVT

 How to handle unobserved cases?
e Assume the value as 0.
* Minimize the loss function with different weights

min Z (AQJ — <Uzan))2 + wy Z ((UE:V?»Z
UeR™, VeR™ (i,j)€0bs (i,5) #obs

Observed Only MF Weighted MF

T e ane (A - UL V)2
(0-U,. V)

0 —(,]) €£obs

https://developers.google.com/machine-learning/recommendation/collaborative/matrix




Matrix Factorization (=~ Matrix Completion)

« Standard matrix factorization is transductive.

min (PU- — (WHT)U.)2 + % (|| Wil + ||H||F2)

W.H
(ij)eQ
To prevent overfitting
' e | Target Gene /
.o Disease
itemgraph  ® @ .
wnlr "L
sl- g
Drug '
5] a 1]
user graph item variables
§ 5] a o 2
\ i'i ’i ii m %
Y ¢ 4 m = B
L S Y ¢ "t s %
o o o

Example of item recommendation

Beyond Low Rank Matrix Factorization | Center for Big Data Analytics (utexas.edu)

Matrix Factorization (=~ Matrix Completion)

» Standard matrix factorization is transductive.

min 3> (2, — (wr"))) 5 (1w + 1H],)

To prevent overfitting

 All matrix completion approaches suffer from extreme sparsity of the
observed matrix and the cold-start problem.

Easy to learn & predict ™" """

Hard to learn & predict cold-starting

(Ocepek, Uros, Joze Rugelj, and Zoran Bosni¢., Expert Systems with Applications, 2015.)




Matrix Factorization (=~ Matrix Completion)

« Standard matrix factorization is transductive.

. 2 A
min 3 (P — (wH"),) +5 (1w + 1)

(ij)eQ

To prevent overfitting

* Inductive Matrix Factorization (or Completion)

« Can be interpreted as a generalization of the transductive multi-label
formulation

. A
min 3 ¢(Py. 5 WH'y) + 5 (1w + 14])

(ij)e@

Matrix Factorization (=~ Matrix Completion)

* Inductive Matrix Factorization (or Completion)

» Can be interpreted as a generalization of the transductive multi-label
formulation

. A
min ((Py, x;' WH"y;) + 5 (|| W||F2 + ||H||F2)

(ij)eQ

» Positive-Unlabeled (PU) Matrix Completion
* In case of DTl task, we collect positive pairs of drug and target protein.
* Itis difficult to “well-defined negative” data.

. 2 2
min > (Py—xiWHy") +a > (Py—xWHTy")
T ij)eQt (ij)eQ”

2 2
+ ’1(” WHF + ” H”F ) a: the penalty of the unobserved entries
toward zero

(Zeng, Xiangxiang, et al., Chemical Science, 2020)




Graph Neural Network

Graph Neural Network

The bigger picture:

Input

Hidden layer

Hidden layer

Notation: G = (A, X)

. Adjacency matrix A € RY*Y
+ Feature matrix X € RV

Output

Main idea: Pass messages between pairs of nodes & agglomerate

*slide from Thomas Kipf, University of Amsterdam




Recap: Convolutional Neural Networks (on grids)

Single CNN layer

with 3x3 filter: h
0

h; ..
O\?’/O Update for a single pixel:
O30 + Transform messages individually W h;

‘\O + Add everything up Zi W.h;
ol

h; € RY are (hidden layer) activations of a pixel/node

/N
/ |"“\‘

Full update:

b{™ = ¢ (W'n{ + W'n{ + ...+ wn{)

*slide from Thomas Kipf, University of Amsterdam

Graph Convolutional Networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 20186)

Consider this Calculate update
undirected graph: for node in red:

O O O

Update
rule: hng) (h(l W[()l) + Z h(Z)W(Z))
Cij

JEN;

Scalability: subsample messages [Hamilton et al., NIPS 2017] J\/;v :neighbor indices  €;;: norm. constant
(fixed/trainable)

*slide from Thomas Kipf, University of Amsterdam




Graph Convolutional Networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

: . Vectorized form
Consider this Calculate update

undirected graph: for node in red:

O O

O\\ ) with A=D 2AD 2
O Q O
O O O/ Or treat self-connection in the same way:

: .
AR —
Update 1 ) o o
te: hV =g [(ROW 4 ST —nlwl with A =D #(A +1y)D *

HAD — 4 (H(E)WE}U | AH':'-”W{]-”)

Scalability: subsample messages [Hamilton et al., NIPS 2017] j\/; :neighbor indices  €i; : norm. constant

(fixed/trainable)

*slide from Thomas Kipf, University of Amsterdam

Graph Convolutional Networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 20186)

Consider this Calculate update Desirable properties:
undirected graph: for node in red: » Weight sharing over all locations

* Invariance to permutations
O O * Linear complexity O(E)

O O\g » * Applicable both in transductive
O o O/' and inductive settings

O O

Limitations:

* Requires gating mechanism /

Update (O xxr (D) T (Dxr(D) residual connections for depth

rule: h; =o | h; Wy + Z zh} Wi + Only indirect support for edge features
JeEN; -

Scalability: subsample messages [Hamilton et al., NIPS 2017] J\/‘i :neighbor indices  €;;: norm. constant

(fixed/trainable)

*slide from Thomas Kipf, University of Amsterdam




Classification and link prediction with GNNs/GCNs

Input: Feature matrix X € RNXE,

preprocessed adjacency matrix A

Hidden layer Hidden layer
. .
7 e .
— —
.. . ® ‘. o *
Input ® e ® e
. @
e .\'f-". ReLU . ﬁ,.
L S ) .
X =H A A
L ] L ]
L ] ° L ] ™
L ° e Y ® L]
LIS * %
- @@ J -

HD — 4 (AHU)WU))

Node classification:

softmax(zy)
e.g. Kipf & Welling (ICLR 2017)

Qutput
Graph classification:
ReLU
e Vo softmax()  zy)
o() e.g. Duvenaud et al. (NIPS 2015)
Z = HW)

Link prediction:

— T,
p(Aij) = o(zi z;)
Kipf & Welling (NIPS BDL 2016)
“Graph Auto-Encoders”

*slide from Thomas Kipf, University of Amsterdam

Various GNNs - Isotropic

» Different Aggregation and Update functions are utilized for GNNs

£l
lhr’

A

¢+
b e+
i

Figure 6. GCN Layer

Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks." arXiv preprint arXiv:2003.00982 (2020).

Figure 7. GraphSage Layer

Figure 8. GIN Layer




Various GNNs - Anisotropic

* Different Aggregation and Update functions are utilized for GNNs

* Learn weights of neighborhoods

PRt

K 1

®K
Heads

xK
Kernels

x
I
i thy)

Figure 9. GAT Layer Figure 10. MoNet Layer

Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks."

Figure 11. GatedGCN Layer

arXiv preprint arXiv:2003.00982 (2020).

Summary of Part2




Summary

® Graph
* A collection of interactions

* Contains relationships between drugs, genes, and diseases

* Heterogenous data types provide rich information but also cause
technical challenges

* Technologies
* Random Walk-Based Node Embedding
* Network Propagation
* Network Centralities / Clustering
* VAE / Collective VAE
* Matrix Factorization

* Graph Neural Network

PART 3
Graph Learning for Drug Target Identification




Contents

* Current researches in DTI prediction

* Future directions in DTI prediction

* Heterogenous drug, gene, disease information

* Downstream effect of drugs

* Technologies for DTI

* deepDTnet (Chemical Science, 2020)

* Drug embedding with target information
(Briefings in Bioinformatics, accepted)

Current researches in
DTl prediction




Computational and Structural Biotechnology Journal 19 (2021) 1541-1556

COMPUTATIONAL
ANDSTRUCTURAL
! BIOTECHNOLOGY
Moo, J O URNA L

journal homepage: www.elsevier.com/locate/csbj

A review on compound-protein interaction prediction methods: Data, \Tl
format, representation and model St

Sangsoo Lim®!, Yijingxiu Lu”, Chang Yun Cho ¢, Inyoung Sung ¢, Jungwoo Kim °, Youngkuk Kim",
Sungjoon Park ", Sun Kim *>¢4*

2 Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea

b Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
“Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea

< Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea

Computational and Structural Biotechnology Journal, 2021 (cited 25 times)

Review on DTl research

+ Background:

» Al approaches such as kernel-based, tree-based classifications, and neural
network variations are recently applied to predicting affinity or interactions
between small molecular drugs and protein targets.

« DTl researches could be separated into three major parts: data preparation,
model training, and prediction.

Overview of DTI prediction processes

Jata preparatio Model training Prediction
Chemical DB Protein DB Machin learning
2% . Binding affinity
2 ’ét 'A;:'»(- Tree Feature manipulation
y K r Wl (e.g. LASSO, network)
Mo b
String String |
COC(=C(C1=CC=CC=C .
l)('Z‘%‘(‘(AC((‘fCZ)O(‘C [ vw] Deep learning Metri
N(C)C)CICC-CC=C3 ¢
Graph RNN and CNN

1C50, EC50, Ki, Kd, -

Fingerprint I.""(ﬂ PN
gﬁ'j@é) I..zlﬂ E@E /Prcdiction\

Evolutionary Graph Other deep learning Regression  Classification

Graph information (e.g. GAN, AutoEncoder)

s T}

by




Review on DTl research

« Data preparation:
» Compounds:

» Chemical compounds can be described naturally in a human-readable format

such as strings, graphs, or images.

» Chemical fingerprints that represents the existence of constitutive
substructures/scaffolds or common functional groups are also widely used.

* Proteins:

* Protein are represented as sequence of amino acids in most recent Al-based

DTI researches.

 To utilize protein 3D structures, it is common to convert it as chemically

attributed spatial graphs.

» Compared to the number of known amino acid sequences, number of known

protein structures are much smaller.

Review on DTl research

» Data preparation:

Formats and encoding schemes of compounds

— a) String

" 7Y
AN - Z
SMILES L SELFIES N~ SMARTS |
A2/ N2
NN
T s a5 S & o
AN I 5, Y [ Nz N

s .
ot g
Tamoxifen Subgraphs ﬂ, —) -

!, M e Adjacency matrix
o '
. 4 | o= § Ea

noooonnaoosoiiRIES e R i

Binary bit vector (chemical fingerprint vector) | | * * * .' -i W |

[ b) Fingerprint j-

Formats and encoding schemes of proteins

| a) String ‘ - b) Evolutionary information

ADTIPR
n H oToTo ol o A D T  § 8 2 R

[s] ofofofofo]1
[1] 1ofofofo]o
w n - ojof1|O0|O|0O
[4] ofofof1]o]0
[2] ofl1fofofo]o
[3] ofof1]ofo]0
n 1({0]JojJOfoO0]O

Protein structure
Left: Protein Structure

Sequentially connected graph Spatially interacting graph
= : sequential graph

; e ial) Grapk
Middle: (Sp Taph «ss. spatial graph

i ion of protein structure
| Right: Spatial graph with atomic attributes

*} ¢) Graph




Review on DTl research

* Model training:

« Machine learning-based methods:
» Decision tree, random forest
» Support vector machine
» Heterogeneous network

* Deep learning-based methods:
» Recurrent neural network (RNN), Natural language processing (NLP)
» Convolutional neural network (CNN)
* Graph neural network (GNN)
 Variational autoencoder (VAE) or generative adversarial network (GAN)

Typical model architectures for DTl

* Train compounds and proteins separately with two independent deep learning
modules.

* Combine latent vectors of compounds and proteins for interaction prediction.

DeepDTA, Oztiirk H et al. CPI-Prediction, Tsubaki M et al. DeepPurpose, Huang K et al.
E s

Predict the interaction

Compound Encoders

o® [G®] + - o @
Hidden vectors of subsequences

Convolutional neural network

Compound training module Protein training module

Oztiirk H, Ozgir A, Ozkirimli E. Bioinformatics, 2018
Tsubaki M, Tomii K, Sese J. Bioinformatics, 2019,.
Huang K, Fu T, Glass L M, et al. Bioinformatics, 2020,.




Drug — Target interaction
needs to consider
downstream effects, gene expressions!

Drug-target interactions and gene expression

» Drug molecules intervene in the regulatory process by binding with
specific target ligands.

« Traditional treatment design based on physical parameters and external
modalities or simple drug-target interactions are not sufficient for meeting
clinical drug safety criteria or specifying variability among individuals.

* Modeling of the integrated clinical data and multi-layer molecular
interactions makes the drug responses predictable.

- + Start from single molecular level
Jog <Fva!or.—v<m:r<b>—-—ﬂvm

Functon tissemse 14—l | s {
[ J | [
WINGY  Function 2idaeese 24 1|
— L {
Q mRNA
Fancnen Vataate 1—{
onps 3

Proten

Rt are the abrormaly

G311 Jenat (Gans

epreswon o N form of
protens)?

Dysfunction

. or tio
. ,.—'
o Metabolite
Protei o ote
S interactior
A/me
B

DNA

+ Start from drugs I + Start from unltdluuo '
ctarvene at 216 T FOM4 O

G Analysis of disease and drug effect

Yue R, Dutta A. Computational systems biology in disease modeling and control, review and perspectives[J]. npj Systems Biology and Applications, 2022,"8(1): 1-16.




Technologies for DTI

* deepDTnet (Chemical Science, 2020)
* Drug embedding with target information (Briefings in Bioinformatics, accepted)

Chemical Science, 2020

Target identification among known drugs by deep
learning from heterogenous networks
Xiangxiang Zeng,}? Siyi Zhu,1® Weigiang Lu,i¢ Zehui Liu, ¢ Jin Huang, €29 Yadi Zhou,®

Jiansong Fang,® Yin Huang,*" Huimin Guo," Lang Li,? Bruce D. Trapp," -
Ruth Nussinov, {2V Charis Eng,®“™ Joseph Loscalzo® and Feixiong Cheng {2 *eK!




Motivation

Drug target identification is a crucial process for drug discovery and effective treatment
of human diseases

Unintended therapeutic effects or multiple drug-target interactions leading to off-target
toxicities and suboptimal effectiveness

Experimental determination of drug-target interactions is costly and time-consuming

Challenge

i(_he fe%tures learned from the unsupervised learning procedure did not capture non-
inearity

+ randomly selected drug—target pairs as negative samples often cause potential false
positive rate

Approach: a network-based deep learning for in silico identification of molecular targets
for known drugs

+ Embeds 15 types of chemical, genomic, phenotypic, and cellular networks

* Generate biologically and pharmacologically relevant features through learning low-
dimensional but informative vectors for both drugs and targets

* To address the lack of negative samples, they utilized Positive-Unlabeled (PU) setting

DeepDTnet

DeepDTnet is a deep learning methodology for new target identification
and drug repurposing in a heterogeneous drug—gene—disease network
embedding 15 types of chemical, genomic, phenotypic, and cellular
network profiles.

Overview of deepDTnet

& o % . * Tepotecan (TPT)  TPT & ROR-y1

i - \.\ nﬂ‘

‘)\__ 'ﬁx fﬁ? ﬁﬁ
oL S

o ' p s &

‘ 1 1 oo B o 8

Phenatypic o I,ﬁﬂl

Cellular & 9 e

Genomic o '@

Chemical |

Heterogeneous Deep learning Target identification &
netwaork integration [deepDTnet) Drug repurposing




Model overview

* Input:
» 15 types of chemical, genomic, phenotypic, and cellular networks for 732
drugs and 1,178 targets.

* Output:
» The likelihood of the pairwise interaction score between drugs and targets.

* Methodology:

« DeepDTnet learns low-dimensional vector representation of the features for
each node in the heterogeneous network.

» After learning the feature matrix for drugs and targets, deepDTnet applies
PU-matrix completion to find the best projection from the drug space onto
target (protein) space.

* Finally, deepDTnet infers new targets for a drug ranked by geometric
proximity to the projected feature vector of the drug in the projected space.

Model overview

Drug-drug Drug-disease  Drug side-effect =~ -~~~ -~~~ -~~~ “- -~ "=~ =°~ )
> @ P Protein-protein Protein-disease

|
- |
I o e . : ! : o W e
|
|

P e 4 s * ? - ﬁ Bt

#

. . - - ' '
Learn the low-dimensional vectors for e = L | !

|
|
. Drug similarities | |
drugs, diseases | Chemical similarty | Target (protein) similarities
: Therapeutic similarity ® \ ﬁ Protein sequence similarity
‘ Protein sequence similarity / | gy Biological process similarity |
Biological process similarity o g ) Cellular component similarity :
Cellular component similarity ! Molecular function similarity !
i

Molecular function similarity
L Genomic and Cellular networks
Chemical and Phenotypic networks ) e et

1170 Na Number of drugs
| ) |
| Nt Number of proteins !
- ! fa D ion of drug features

ft  Dimension of protein features

‘ Embedding Embedding ‘

EEm

Matrix representation Matrix representation Prioritized score of

of drug features Z=W|m|T of target (protein) features  new drug-target interaction:
f. —i—
- : kK4 N
. . . fo H' i v ~
PU-matrix completion algorithm for the lack EL..‘ ne o Tl |
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X t
] Y
i.ﬂ. ;s “
-
n W
Low q:mensmnal vector Known drug-target network Low dimensional vector
representation for each drug vertex representation for each target (protein) vertex




Heterogenous networks

* Various databases are collected and utilized

» Ex) drug-target network: DrugBank, Therapeutic Target Database,
PharmGKB

* Ex) disease-gene network: OMIM, CTD, HuGE navigator

p S
| Drug-drug Drug-disease Drug side-effect ‘I e S
! Py i @ : | Protein-protein Protein-disease
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Drug similarities | | i\ cimilari

: Chemical similarity | : Target (protein) sumllantie.s o
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Probabilistic Co-Occurrence matrix &
Positive Pointwise Mutual Information

* Network propagation learns both local and global topological information

» After k step, a probabilistic co-occurrence matrix is obtained for each
network

pr = pr1A+ (1 —w)po

« A positive pointwise mutual information (PPMI) matrix is calculated to
obtain drug representaions

Z

r Nc

_ 2 MG, j)

F

M(i, f)

-]

Z--..

PPMI = max logN , 0

EMM*EM( j)

J

M : the original co-occurrence matrix,
N, : the number of rows
N, : the number of columns.

Stepl: low-dimensional representaions
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Step2: PU-based matrix completion

Na Number of drugs

Nt Number of proteins

fa Dimension of drug features

ft  Dimension of protein features

Embedding ‘

‘ Embedding

Matrix representation

¢ p Matrix representation Prioritized score of
of drug features Z=WH' of target (protein) features  new drug-target interactions
fa ety N
% - k. f P B = —
' T I A
Ne fo W H ‘ fi YT
X ' T
! PU-learning Y
matrix completion
| |

X -
L}
h it

Low dimensional vector
representation for each drug vertex

Known drug-target network Low dimensional vector

representation for each target (protein) vertex

Inductive matrix completion

- i 5 5
i /(P xTWHTy, —( w2+ ||H )
5{!_1;}%,9( i X i)+ 5 (W1 + 1

PU-matrix completion

min
W 4
(iqjed?

+ (Wl + 11"

2 2
(P{;—xr-WHT}-}-T) +a Y (Pﬂ—x‘-WHTJ;-r)

lifle@

a: the penalty of the unobserved entries
toward zero

Results: Perfomance of DTI prediction

-

- deepDTnet (AUROC = 0.963)
= KBMF2K (AUROC = 0.937)
DTINet (AUROC = 0.932)
LapRLS (AUROC = 0.923) 1
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——— KBMF2K (AUPR = 0.946)
DTINet (AUPR = 0.943)

—— LapRLS (AUPR = 0.941)
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Results: The uncovered drug-target network

Summary

* Deep learning model for learning heterogeneous drug-gene-disease
newtork

* Key points
¢ Learn multiple chemical & genomic information as low-dimensional
embeddings
¢ Apply PU-matrix completion to address sparsity of postivie samples and lack
of negative samples in DTI




Briefings in Bioinformatics, 2023, accepted

Improved Drug Response Prediction by Drug Target
Data Integration via Network-based Profiling

3

Minwoo Pak® T Sangseon Lee® >t Inyoung Sung®? and Sun Kim®!34*

Motivation

« Drug response prediction is important for precision medicine in that it can
hglp.pretdlc%t how a patient would react to a drug before the actual
administration

* Intuitively, use of drug target interaction (DTI) information can be useful for
drug response prediction

« Challenge: use of DTl is difficult because existing drug response database
such as CCLE and GDSC do not have information about transcriptome after
drug treatment

« Approach: framework, NetGP that can improve existing deep learning-
bs%sed q[_rug response prediction models by effectively utilizing drug target
information.

a module to compute gene perturbation scores by the network propagation
technique on a Protein-Protein Interaction (PPI) network

* NetGP with the network propagation technique produces perturbation effects by
the pharmacologic modulation of target gene

* a model-agnostic way so that any existing DTI tool can be incorporated.




Motivation

« Drug response prediction is highly significant in precision medicine in
that it can help predict how a patient would react to a drug before the
actual administration.

« Drug target information represents the mechanism of the drug affecting
a cell thereby bridging the relationship between the two.

Drug Target S
Data ,’ o e \\
= \
¥ ~. §
-~
S ‘o
) NS,
* @
“ g - W \

Om00;
Drug Response Drug Data

Cell line Data

*GDSC: Genomics of Drug Sensitivity in Cancer
*CADD: Chemoinformatics Tools and User Services

Model overview

* Input
* Drug response information from GDSC
* Drug SMILES data from CADD
* Protein-protein interaction network from STRING
* Drug target information from GDSC and DrugBank

* Model
* TargetNet: drug target profile extraction algorithm
* Placeholder drug response prediction method

* Output
* Drug response: IC50 or area under dose-response curve value




Overview of NetGP

NetGP: Drug Target Profile Extraction Algorithm

Integration with existing tools in terms of
embedding vector (in model-agnostic way)

Drug Target integration for Drug Response Prediction

— —
1 1 =K
1 T = | Embed
| B2
1 : Cell line |— ]
| I - |
1 —.
1 Network Propagation Protein in NP : - \ -
(NP, Top rank — -
: D. ifi 7 I @ ] X Prediction Drug
rug-specific T ‘ 1 ] o L
1 Network O | ] Embed \‘-;’ | | Model response
: . TargetNet Protein 1 Drug |~ / —
. :m:"_" ; Input Protein 2 L -
rotein Protein 3 u
1 Protein 3 — Protein 4 — —
1 Prot.ein 4 E NetGp  |— \ | |
! 5 output |
: Pathway Pathway ; —=—| Embed
Genes Enrichment | if converged (—
1 Drug targets 1 — /
D S NNz 4 -

« Simulate a perturbation effect of a given drug using drug target information

and PPI network - network propagation

NetGP: Model detail

* Phase 1: network-based drug target profile extraction phase

NetGP: Drug Target Profile Extraction Algorithm

Network Propagation Protein in NP
(NP) Top rank
Drug-specific T ¢
Network >
. TargetNet Protein 1
:rn:eln ; Input Protein 2
rotein Protein 3
Protein 3 -+ T
Protein 4 .
. -
.
° Pathway Pathway
Genes Enrichment

Drug targets

Network propagation identifies affected
candidate genes from drug target
genes

Iteratively perform network propagation
with enriched biological mechanisms
Network propagation prunes to
biased seeds and network
topology

Iteration will remove noises




NetGP: Model detail

* Phase 2: drug target profile integration

* Embed cell line, drug and drug target profile from NetGP

* Any deep learning model can be replaced with Placeholder

A i i
Placeholder ———————— | Placeholder method :
E i i 1> MLP i
“}1- ! ' O | » DEERS
¥ 1 1 — § [
:;.TIE = | —>H— AW I
ey I . | B I ¥ DeepTTA 1
Cell line " Data Embedding " -] ' Ete "
@ | Module I ] el et s
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i e o o, e T, o - bl | "
—_:_ Predictor | Drug
I - Module I~ Response
1
— - 1
L] === !
Drug Network NetGP :
Protein 1
Prnte?n} -
PmEean I
Di ti t: H
e s NetGP Embedding Concatenate Prediction
Output output

Results: Performance of Drug Response Prediction

* Drug response prediction performance gain by integrating TargetNet

1st row: Placeholder method

e 2nd row: Placeholder method + NetGP

* Traditional evaluation scheme

* Unseen drugs during training
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(b) Mix Split
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Results: Gene importance analysis

* Drug example: Doxorubicin
a Drug Target Profile Applied c Drug Target Profile Not Applied
Doxorubicin Daxorubicin
. I Directtarge:
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Results: Effect of Drug Target Information
» Use of drug target profile boosts prediction performance, especially for

drugs with explicit target proteins known

Table 3. Explicit Target Drugs vs. Non-explicit Target Drugs.

indicates explicit target pathway.

e

Category Default

Framework Applied

Difference

0.3154
0.3794
0.7467
0.3930

T Default

t DNA Replication
t Mitosis
f*Dther, Kinase

0.4532
0.3835
0.7542
0.6959

+43.69%
+1.08%
+1.00%

+77.07%




Summary

* Proposed a framework for improved drug response prediction by
effectively exploiting drug target information

* Key points
® Presents a drug target profile extraction algorithm NetGP

¢ Drug target profile from NetGP can be integrated to any exiting drug response
prediction deep learning model

Summary of Part3




Summary

®* Graph Learning for DTI

* Current DTl studies focus only drugs and targets of interest.

* Learning heterogenous relationships between drugs, genes, and
diseases is important.

* Downstream effects of drugs will improve drug-target idenfication
and drug response prediction.

PART 4
Drug Repurposing
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Deep learning approach to Antibiotic discovery
Literature-based approaches

® Networks and Databases

® Networks

i PPI—STRING, BioGRID

® Biological pathways — KEGG, Reactome

Disease networks — Diseasome, HDN, DGN

®  Comprehensive heterogeneous networks — Hetio, MSI
® Databases

o Drug Repurposing Hub

d RepoDB

® cm
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PharmacoDB

® Technologies
® Network analysis
® Network centralities
® Network clustering — K-means, Hierarchical
® Network propagation — PropaNet, MLDEG
®* Network representation learning
®  word2vec — DeepWalk, node2vec, DREAMwalk
®  Graph Neural Network
°

Network-based drug repurposing: cases
® SNF-cVAE (Knowledge-Based Systems, 2021)

® (CBPred (Cells, 2019)

® DeepDR (Bioinformatics, 2019)
® BiFusion (ISMB 2020)

[ ]

DreamWalk (in review)

Drug repositioning (or repurposing)

* Repurposing of old drugs to treat diseases is
increasingly becoming an attractive proposition.
» Advantages of repurposing drugs
» Risk of failure is lower
* Time frame can be reduced
* Less investment is needed

— Less risky and more rapid return in investment!
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Biomedical
network

|

?
representation Graph
Ieaming transformations

Pl'edictions, \ é \
patterns, insights .’ ."i} ® Outputs

Representation learning for networks in biology and medicine.
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Graph

Li, Michelle M., Kexin Huang, and Marinka Zitnik. "Graph Representation Learning in Biomedicine." arXiv preprint arXiv:2104.04883 (2021)

Deep Neural
Network

Artificial

Intelligence
Convolutional Network
Neural Network Embedding
SARS-CoV-2
virus-host
Protoomics from . HosBr protin-protel
COVID-positive O virus protein Interactome.
patient 0
A0 virus host protein
FIGURES Adi ills ing deep ing-based drug repurposing infr: for ing devel of host
therapies to fight COVID-19 and future pandemic. We posited that approved drugs that specific human proteins/targets may offer g |

host-targeting therapies for COVID-19 as COVID-19 may share biology with human cells and tissues from the SARS-CoV-2 virus-host
- PR iuadd b

P P PSP

Pan, Xiaoqin, et al. "Deep learning for drug repurposing: Methods, databases, and applications.” Wiley Interdisciplinary Reviews: Computational Molecular
Science (2022)




Disease and Biological Networks

+ Networks is a method of representing systemic biological interactions between various biological

objects.

* These networks or graphs are used to capture relationships between biological entities.

Protein-Protein Interaction
Network of Heroin Use Disorder

Chen, SJ., Liao, DL., Chen, CH. et al. Construction and
Analysis of Protein-Protein Interaction Network of Heroin
Use Disorder. Sci Rep 9, 4980 (2019)

Human Disease Network

Goh, Kwang-Il, et al. "The human disease
network." Proceedings of the National Academy
of Sciences 104.21 (2007): 8685-8690.

“ |8 | =~_:' _-/-“"-:““-
O0%F =

Multi-scale Interactome Network

Ruiz, C., Zitnik, M. & Leskovec, J. Identification of disease
treatment mechanisms through the multiscale
interactome. Nat Commun 12, 1796 (2021)

Baricitinib e LANCET i
Respiratory Medicine in Pharmaceology
Expert-Augmented Computational
Drug Repurposing Identified Baricitinib
as a Treatment for COVID-19

Efficacy and safety of baricitinib for the treatment of
hospitalised adults with COVID-19 (COV-BARRIER):
arandomised, double-blind, parallel-group, placebo-

controlled phase 3 trial Daniiel P. Smith’, Oily Occhsie', Michae! J. Rawling’, Ed Savory’, Alix M.B. Lacoste™" and

. (
Vincent C Marconi, Athimalzipet V Ramanan, Steghanie de Bono, Cynthis £ Kartman, Venkatesh Krishnan, Ran Lo, Maria Lucks 8 Pinszek Potor John Richardson
Jasze D Goldman Joege Alstorre- Alexsoder, R4 de Cassio Pellegrinl Vicente Estroda, Mousums Som, Ansbefa Cordosa, Sujotro Chakdadr, ; London Kangadorn,
Brenda Crowe, Pauko Reiy, Yin Zhang, Devid H Adarres, € Wesley Ly, on behslf of the COV-BARRIER Study Group®

Erpokm, N, Usted States

Interpretation The workflow comprised rapid augmentation
0=5=0 of knowledge graph information from recent literature using
,Q Although there was no significant reduction in the machine learning (ML) based extraction, with human-guided
j ‘> frequency of disease progression overall, treatment iterative queries of the graph. Using this workflow, we identified
N= N—P{I with baricitinib in addition to standard of care the rheumatoid arthritis drug baricitinib as both an antiviral and
X (including dexamethasone) had a similar safety profile anti-inflammatory therapy. The effectiveness of baricitinib was
NS to that of standard of care alone, and was associated substantiated by the recent publication of the data from the
Ly with reduced mortality in dadults with ACTT-2 randomised Phase 3 trial, followed by emergency
H COVID-19. approval for use by the FDA, and a report from the CoV-
o BARRIER trial confirming significant reductions in mortality
BaI'ICItI ni b with baricitinib compared to standard of care

- Originally used for
rheumatoid arthritis
(RA).

- Inhibitor of Janus
Kinase (JAK).

“""’, > knowledge discovery _—

& data mining e 1o




DrugCeli

» DrugCell is an interpretable deep learning model that simulates the response of human cancer

cells to therapy.
» DrugCell predictions might generalize to patient tumors and can be used to design synergistic
drug combinations that significantly improve treatment outcomes.

Cancer Cell -
Predicting Drug Response and Synergy Using a Deep interpretable
Learning Model of Human Cancer Cells hierarchical
Graphical Abstract Authors Syste m
Brent M. Kuenzi, Jisoo Park,
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Kuenzi, Brent M., et al. "Predicting drug response and synergy using a deep learning model of human cancer cells." Cancer cell 38.5 (2020): 672-684
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Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.




Dsicovery of structurally divergent antibiotics

 Here, we demonstrate how the combination of /n si/ico predictions
and empirical investigations can lead to the discovery of new
antibiotics.

* First, we trained a deep neural network model to predict growth
inhibition of Escherichia coli using a collection of 2,335
molecules.

e Second, we applied the resulting model to several giscrete
chemical libraries, comprising >107 million molecules, to identify
potential lead compounds with activity against £. col.

« After ranking the compounds according to the model’s predicted
score, we lastly selected a list of candidates based on a pre—
specified prediction score threshold, chemical structure, and
availability.

* Through this approach, from the Drug Repurposing Hub, we
identified the c=Jun N—terminal kinase inhibitor SU3327 (De et al.,

Literature-based approaches

Biomedical text mining is becoming increasingly important as the
ber of bi dical doc rapidly grows. With the progress in

natural language processing (NLP), extracting valuable information
from biomedical literature has gained popularity among researchers,
and deep learning has boosted the development of effective
biomedical text mining models. However, directly applying the
advancements in NLP to biomedical text mining often yields
unsatisfactory results due to a word distribution shift from general
domain corpora to biomedical corpora. In this article, we investigate
how the recently introduced pre-trained language model BERT can
be adapted for biomedical corpora. We introduce BioBERT

Bipinformatics, 36141, 2010, 12M4-1240

dot: W01 binivformaticabutal

Advance Access Publication Date: 10 Suptember 2019
Qrigins! Paper

Data and text mining (Bidirectional Encoder Representations from Transformers for
5 . - - ; ical A ich el |

BioBERT: a pre-trained biomedical language Biomedical Text which s a =

_ i v s 5 representation model pre-trained on large-scale biomedical corpora.
representatlon model fOl' blomEdlcal text mining With almost the same architecture across tasks, BioBERT largely
Jinhyuk Lee @ ™", Wonjin Yoon @ ™', § i Kim @ %, Donghy Kime ", outperforms BERT and previous state-of-the-art models in a variety
Sunkyu Kim @ ", Chan Ho S50 (@ * and Jaewoo Kang & "+ of biomedical text mining tasks when pre-trained on biomedical
'Dupartmant of Computer Seience and Enginauring, Korea Univarsity, Sooul 02841, Kores, “Clova AJ Resoarch, Naver Corp, Seong- corpora. While BERT obtains performance comparable to that of
Nam 13561, Korea and “Interdisciplinary Graduate Program in Bivinformatics, Korea University, Seoul 02841, Korea previous state-of-the-art models, BioBERT significantly outperforms

them on the following three representative biomedical text mining
tasks: biomedical named entity recognition {0.62% F1 score
improvement), biomedical relation extraction (2.80% F1 score
improvement) and biomedical question answering (12.24% MRR
improvement), Our analysis results show that pre-training BERT on
biomedical corpora helps it to understand complex biomedical texts,
We make the pre-trained weights of BioBERT freely available at this
https URL, and the source code for fine-tuning BioBERT available at
this https URL.

Lee, Jinhyuk, et al. "BioBERT: a pre-trained biomedical language representation model for biomedical text mining." Bioinformatics 36.4 (2020): 1234-1240.




Literature-based approaches

P ———— m Table 1. List of text corpora used for BioBERT
b A oo B St 8
Drigest Pase Corpus Number of words Domain
Data and text mining English Wikipedia 2.5B General
BioBERT: a pre-trained biomedical language BooksCorpus 0.8B General
representation model for biomedical text mining PubMed Abstracts 4.5B Biomedical
dokysbikan® . Wonhs Xion 7. Suipdeey o @ Rongtivesn K@ PMC Full-text articles 13.5B Biomedical

Sunkyu Kim @ ', Chan Ho So © * and Jaewoo Kang & ***

'Daparsment of Compater Sciesce and Enginesrieg. Kotea Univarsty, Sesul 5841, Korea, "Diove Al Ressarch, Naver Corp, Sesng-
Mam 13861, Korea asd ') Prog Karva Univarity, Savsl G201, Kerea

Pre-training of BioBERT Fine-tuning of BioBERT
Pre-training Corpora BioBERT Pre-training Task-Specific Datasets BioBERT Fine-tuning
( a R '
Pubmed 4.58 words T T 5 Named Entity Recognition the adult renal failure cause .
i i L) NCBI disease, BC2GM, ... PO O B | O
PMC 13.58 words T ) Tim \, \,
=1 ) ) i Variants in the @GENES region
Weight Initialization G Relation Extraction contribuite to @DISEASES susceptiblty.
b EU-ADR, ChemPraot, ...
» True
£ E E=E g ~\ r
= h i i What does mTOR stands for?
@@ @ from Deviinetal. SR . i Question Answering
rom Devlin et al F-re trﬂlf]Ed EIDBE-RT with BIoASQ 5b, BioASQ 6b, ... P mammalian target of rapamycin
eils] ﬂE:! biomedical domain corpora W\ s .

Lee, Jinhyuk, et al. "BioBERT: a pre-trained biomedical language representation model for biomedical text mining." Bioinformatics 36.4 (2020): 1234-1240.

Literature-based approaches

PubMedBERT

Domain-Specific Language Model Pretraining for Biomedical
Natural Language Processing

YU GU", ROBERT TINN", HAO CHENG', MICHAEL LUCAS, NAOTO USUYAMA, XIAODONG

LIV, TRISTAN NAUMANN, JIANFENG GAO, and HOIFUNG POON, Microsoft Rescarch Model PubMed Corpus #Words
BioBERT abstracts 4.5 billion

. PubMedBERT abstracts + full-text 16.8 hillion
BioM eg atron BioMegatron  abstracts + full-text-CC 6.1 billion

BioMegatron: Larger Biomedical Domain Language Model

Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina,
Raul Puri, Mostofa Patwary, Mohammad Shoeybi, Raghav Mani
NVIDIA / Santa Clara, California, USA
hshin@nvidia.com

Lee, Jinhyuk, et al. "BioBERT: a pre-trained biomedical language representation model for biomedical text mining." Bioinformatics 36.4 (2020): 1234-1240.

Gu, Yu, et al. "Domain-specific language model pretraining for biomedical natural language processing."ACM Transactions on Computing for Healthcare (HEALTH) 3.1 (2021): 1-
23.

Shin, Hoo-Chang, et al. "BioMegatron: Larger biomedical domain language model." arXiv preprint arXiv:2010.06060 (2020).




Networks

Commonly used biological networks and disease networks

Protein-protein interaction network (PPI) — STRING, BioGRID
Biological pathways network — KEGG, Reactome

Disease networks — Diseasome, HDN, DGN

Comprehensive heterogeneous network — HetioNet, MSI

Browse COL5A1 protein in STRING

PPl Network - STRING "@?STRlNG A+ STRING i g

STRING
» Search Tool for the Retrieval of Interacting Genes/Proteins
» Integrates all publicly available sources of protein-protein
interaction information.
* Automated text mining
* Interaction experiments
» Computational interaction predictions from co-expression
» Statistics of latest version of STRING

Organisms 14,094
Proteins 67,592,464
Interactions 20,052,394,041

Szklarczyk, Damian et al. “The STRING database in 2021: customizable protein-protein networks, and functional
characterization of user-uploaded gene/measurement sets.” Nucleic acids research vol. 49,D1 (2021)




P P I N etwo rk - B i OG RI D BIOGRI D LEM  Browse HMGCR protein in BioGRID

BioGRID

+ Biological General Repository for Interaction
Datasets

« Archives genetic and protein interaction data
from various organisms.

Category

Protein/Genetic inter 2,551,504
actions

Chemical interactions 29,417
Post translational mo 1,128,339

difications

e ol 1t actor Statiatics
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Oughtred, Rose et al. “The BioGRID database: A comprehensive biomedical resource of curated protein, genetic,
and chemical interactions.” Protein science : a publication of the Protein Society vol. 30,1 (2021)

Biological Pathways Network - KEGG @

KEGG

» Kyoto Encyclopedia of Genes and Genomes

» A curated collection of biological information compiled
from published material.

 Includes information on genes, proteins, metabolic
pathways, molecular interactions, and biochemical
reactions associated with specific organisms.

* Provides a relationship for how these components are
organized in a cellular structure or reaction pathway.
p53 signaling pathway from KEGG

ﬁﬁl----------------------- L

e

Statistics of KEGG

KEGG Database as of 2022/11/15

Systems information

KEGG PATHWAY  Pathway meps, reference (total) 560 (981,813)

KEGG BRITE Functional hierarchies, reference (total) 180 {331,224)

KEGG MODULE KEGG modules 470
Reaction modules 46

i rmation

KEGG ORTHOLOGY KEGG Orthology (KO) groups 25,499

KEGG GENES Genes in KEGG organisms 43,807,605
Viral genas 595,443
Viral mature peptides 312
Addendum proteins 4,125

KEGG GENOME KEGG erganisms 8,528
(817 eukaryotes, 7310 bacteria, 401 archaea)
KEGG selected viruses (T4 category) 359
KEGG viruses (Vtax category) 11,485

Chemical information

KEGG COMPOUND Metabolites and other chemical substances 19,017

KEGG GLYCAN Glycans 11,114

KEGG REACTION  Biechemical reactions 11,858
Reaction class 3,192

KEGG ENZYME Enzyme nomenclature 8,012

Health information

KEGG NETWORK  Disease-related network elements 1,310
Network variation maps 146

KEGG VARIANT  Human gene variants 802

KEGG DISEASE Human diseases 2,603

KEGG DRUG Drugs 12,004
Drug groups 2,410

Drug labals

KEGG MEDICUS  Japanese prescription drug labels from JAPIC 14,138
Japanese OTC drug labels from JAPIC 10,638

KEGG MEDICUS  FDA prescription drug labels linked to DailyMed 34,227

Kanehisa, Minoru et al. “/KEGG for taxonomy-based analysis of pathways and genomes.” Nucleic acids research, gkac963. 27 Oct. 2022




Biological Pathways Network - Reactome ' reactome

Browse Signal Transduction pathway in Reactome

Reactome Wreoctome 57 [ e
* Open source pathway database o
» Curated human pathways encompassing EEL:_"”".."..":
metabolism, signaling, and other biological Eoan — > §
processes. o n s ‘\ s AN
. . . * 0¥ Garw wsorvenon (Tameresor ; e e
+ Every pathway is traceable to primary literature. : % — /,“' .
.. . - epmes | Ty vz
 Cross-reference to many other bioinformatics ~ ZiZz. , =!
databases. i 4; e
» Provides data analysis and visualization tools.  :&emesmmere ,{f
e
g * T Rapacen ==
Statistics of Reactome e [
SPECIES PROTEINS COMPLEXES REACTIONS  PATHWAYS 3. CeTN—— |
5, pombe 1690 1805 1486 819 " "';'_"'”“"
5. Cerevisiag 1M3 1827 1566 Bz )-.:::.:n-.
. reria 8633 BA52 T3E3 1676
X, tropicalis 045 73 6159 1580
G, gallus 7295 7931 EBSA 1706
5. scrofa B407 BE2S 7548 1660
B. taurus HA41 9182 ED48 1696
€. famillaris a162 8725 7455 1657
R. norvegicus BEOE 9505 B356 1702
M, musculus 9537 10620 9456 1718
*H. sapiens 11087 14084 14398 260
D. melanogaster 4755 5402 4596 1477
C. elegans 4458 4403 3700 1304
D. discoideum 2681 2502 2313 462
P. falciparum 1051 1007 EB1 599

Gillespie, Marc et al. “The reactome pathway knowledgebase 2022.” Nucleic acids research vol. 50,D1
(2022)

Disease Networks — Diseasome, HDN and DGN

DISEASOME
Human Disease Network S S = Disease Gene Nefwork [ Nadu s ||
(HON) o = - (DGN) | @« |
s frosors iz - - @ »
& B | == :
el Sae ovam ""“ : e O i
B = - ® o
-«i— QT E  Aw i
e e o e — T
2 Seuninanvlll " =2 o e
) i < - ﬁ-
el e @i —
=l - oscriw cies |
e - ose
Diseasome Pt
* A small subset of OMIM-based disease gene §
association. 3
HDN: Human Disease Network o
» Projection of the diseasome bipartite graph. e

» Two diseases are connected if there is a gene that is
implicated in both.

DGN: Disease Gene Network

« Two genes are connected if they are involved in the

. Goh, Kwang-Il, et al. "The human disease network." Proceedings of the National Academy of Sciences 104.21 (2007): 8685-
same disease. 8690.




Comprehensive Heterogeneous Networks - HetioNet

HetionNet Web Interface

HetioNet @' eliFE

* An integrative network encoding knowledge from
millions of biomedical studies.
» Data were integrated from 29 public resources to

connect meta-nodes. EXPLORE Q
» Meta nodes (11 types): anatomy, biological
process, cellular component, compound, disease, Connectivity Search
gene, molecular function, pathway, Comnactily search areduniycaled M) lows youte. (g
pharmacologic class, side effect, symptom paalniibiehpopiaiigll '
- Meta edges (24 types) polyeystc S e e .5:33.
Ovary syndrome wvisualizations with highlighted paths. and more .__

ch Q

. Hypgtension

Neodj Browser

MNeod] is a third-party graph database that supports the Cypher
language for querying and visualizing hetnets. Uisers can make

advanced queries on Hetionet right away — without .
diwniksadin anything = by using the public Neod] browserags - 3 @, ) L]
hosted here. The connectivity search above uses Neod| for e [ ]
some of its real-time computations and queries. Neod] alo ¢ 9. [ Y
provides an AP1, which makes it possible for developers to -3
create their own services/apps that query Hetionet. LN P
-
ser ¥

Himmelstein, Daniel Scott et al. “Systematic integration of biomedical knowledge prioritizes drugs for repurposing.” eLife vol. 6 e26726. 22 Sep. 2017

Comprehensive Heterogeneous Networks - MSI

\ N (o) Phiyscal Treatment Funcuceal Treatiment (] Rosuvastatin Hyperfipoproteinemia Type (1

MS| B e

* Multiscale Interactome network

* An integrative network of disease, proteins,
biological functions and drugs.

» Data were retrieved from 19 public databases.

* Random walk-based method can be applied to

A Cromters
s Moot 8

A e Creston

X ,’aowu-m N ¥ 4

capture the effects of drugs through a hierarchy Wl A
of biological functions and protein-protein
interactions.

\ «  Hypedpcprotenema

Ruiz, C., Zitnik, M. & Leskovec, J. Identification of disease treatment mechanisms through the multiscale interactome. Nat Commun 12, 1796 (2021




Databases

Commonly used databases for Drug repositioning

Drug Repurposing Hub
repoDB

CTD

PharmacoDB

Database Overview (graph view)

Disease B Chemical
Clinical 0 Biomolecular
information

B Drug-target interactions

Pathway :
commons |

DECIPHER |

e -
amn

Side effects

SumTamT/
Wiki-Pi |

ChEMBL

IDAAPM

Figure 1. Drug repositioning databases categorized into more than one subcategory. Some subcategories are shown more than once in order to facilitate the
interpretation of database relationships.

Tanoli, Ziaurrehman, et al. "Exploration of databases and methods supporting drug repurposing: a comprehensive survey." Briefings in bioinformatics 22.2 (2021): 1656-
1678.




Database Overview (table view)

TABLE1 The wilely used dusbases is érog reperponing

TABLE 1 (Contimued)

s Database Tescribe URL Raforances APT
HandingIiH o ligard w .
hat L - KEGG Itis a knowledge hase ol
P g = - functions, Ilnﬂngmhmmmwm
a iy fisnctional information.
s LINCS 1t contains details sbout the drog assys, cell types, and hetpe/fwwsw lincsproject gl 48
g e . pesturbagens that ase cusvently part of the libeary, as well  LINCS/
o 12 A
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oo dhfferent smarces. OMIM | P 47
ChEMEL n penes. and perstic phenotypes that is freely available snd
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vty i et dats 13 e sl of ‘OMIM conesén information on all known Mendelian
T Y — ovee 16,000 ganes, an it
Chemiib u HA otk P -
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{Com pust Comparive L L DNA, RNA. small molecules, and complexes.
Datshuse) et o e PO Ki 1t comtains bicactivity data in terms of k, especially for hitpec//pedspdbuncedu 0
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Bl Drug: froem g u - " 1
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Commens. and Therapeuti Targe Database response for cliniclans and researchers.
HslleNET Mis o dosirery platfores coetsning pablich avaiable g disgreelon! W8 Probes & Drugs A public rosourca joining togethar focused libsaries of hetpe/ s probasdrugLong! 52 HA
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; NS,
e Brug Taget a ®A Supertanget e 54 NA
&ati and irsplemests actwork vausisations. DTP il Bm=h! Im-tmn\ddnuidcdhn de/supertanget/
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Pan, Xiaoqin, et al. "Deep learning for drug repurposing: Methods, databases, and applications." Wiley Interdisciplinary Reviews: Computational Molecular
Science (2022)
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Databases: Drug Repurposing Hub »a%wu

g ZBROAD
(¢ all L

INSTITUTE

Drug Repurposing Hub

« A curated and annotated collection Of FDA- Browse Sildenafil in Drug Repurposing Hub Web app

Target Pratein Class

approved drugs, clinical trial drugs, and pre-  /siidenafil
clinical tool compounds with a companion
information resource. ‘ Tl o NP
+ Hand-curated collection of compounds were ) Clnica phase Dxpected mass S
. . . Launchy 474,
experimentally confirmed and annotated with from FOA Orange ook InChiey
literature-reported targets. ki AN,
 Each drug information includes compound OO amtrme

name, clinical phase, mechanism of action, and

protein target.

Statistics of Drug Repurposing Hub

Category

Total samples
Protein targets
Unigue compounds

Drug indications

Count
16,826
2,183
7,934
670

View samples
for compound

Approval Date

Mar 27, 1998
Show all 32 rows

Patent Expiration Date

Apr 22, 2020

phosphodiesterase inhibitor

Targets (5)
POESA® @ sLico e
. sicorgze

Source: DrugBank ®, IUPHAR
e TIDe

Number

020895

Number

64690124PED

External Links: DrugBank | IUPMAR | TTD | ChEMBL

€leclecc10COS{=0)
{=OMN1CENCKCY

Orange Book

Ingredients: SILDENAFIL CITRATE

Applicant
PFIZERINC

Patent Use

Purity

Corsello, Steven M et al. “The Drug Repurposing Hub: a next-generation drug library and information resource.” Nature medicine vol. 23,4 (2017)




Databases: repoDB repoDB % {8

Drug Repositioning Database

repoDB a
» A standard set of drug repositioning successes Sﬁfmdcunw Trial DrugCentral
and failures that can be used to fairly and s DHgns LR
reproc_:lgmply benchmark computational UMLS Indcation S i
repositioning methods. MaSH lntervantian DrugBank Appraved 1D
» Data were extracted from DrugCentral and , )
.. . Drug and Disease Approved Indications for
ClinicalTrials.gov. Annotated Trials FDA-approved drugs
 Each drug information includes compound = T y
name, clinical phase and disease name. b s 44 T
Statistics of repoDB PevG ond Diseess.
n Abnesmaily
B000 u mwm repoDB
W Dissass o Syndrame
00 B Frdng
] wmw
- E s Category (status)
g 5000 B Fathologic Function
. B o000 Symsiom Approved 2,162
0 ms Suspended 78
- Terminated 518
1000 Bis
u —_— — Withdrawn 336
Approved Suspended Tarminated Wittedrawn
Trial Stabus

Brown, A., Patel, C. A standard database for drug repositioning. Sci Data 4, 170029 (2017)

CTD

a5 @ Curated Exposure Statements 204,467

Databases: CTD ‘*“Ctd : Unique Chermicals 1,500
‘ Unique Genes 1,084

‘ .,:_) Unique Diseases 488

Comparative Toxicogenomics Database ‘ Uriie G0 Terine i

CTD

Provides manually curated information about Curated EXpokive Refarances ;5,300

chemical-gene or protein interactions, chemical- Browse Sildenafil in CTD Web app
. . . . O sildena:
disease, and gene-disease relationships. gl —
Recent version of CTD offers a CTD Tetramer Nae © Sildenafil Citrate
R ——— Equivalent Terms * 1-({3-(5, 7-Dinydre-1-methyl-7-oxe-3-propyl-1H-py (4,3-g)p 3in-5-yi)-4 ¥ )-4-
tool that generates potential molecular ot e Scanah NSO 1KLL | N Mt Bideat

C | fevatio | Sildenafil | Sildenafil, Desmethyl | Sildenafil Lectate | Sildenafil Nitrate | UK 9248010 | UK 92,450
meChan|St|C pathways_ 10 | UK 92480 10 | UK 92480-10 | UK-92,480-10 | Viagra
Definition * A PHOSPHODIESTERASE TYPE=5 INHIBITOR; VASODILATOR AGENT and UROLOGICAL AGENT that is used in the
treatment of ERECTILE DYSFUNCTION and PRIMARY PULMONARY HYPERTENSION.

POESA

(i (e ———
AT —
Tetramer tool Pt
B —
chemical-gene interaction H Hmox  —
CASK) |—
PRRGE —
. . . VEGFA
chemical-phenclype interaction H wos! \em—

a
4

Interactions
hemical-dis jati
ﬂ MeSH®ID * 0000068677

Exismal Links ruschem +

) CORO0EEETT
gone-disease u

Aneestors + Top 1
gene-phenalype/GO annctation H 1. Chemicals + Organic Chemicals # 7 € & — Amides # 7 € @ - Sulfonamides # T € & « Sildenafll Citrate # 7 €
2. Chemicals « Organic Chemicals B T € &+ Sulfur Compounds H T € & « Sulfones H T € & + Sulfonamides H T € &+
Sifdenafil Cltrate 5 T €
—————r___ ¥ Y Y __ & Chemicals » [« HTCE- [« 1-Ring H T € & « Piperazines # T € + Sildenafl

ottt - i Citrate H T €

' H

:CTD Tetramer H 4. Chemicals « Meterocydlic Compounds H T € & « Heterocyclic Compounds, Fused-Ring # T € % « Heterocydic Compounds, 2-
S H

S LR p———————— Ring H T € &+ Furines H T € % « Sildenafil Citrate 14 T €

Davis, Allan Peter et al. “Comparative Toxicogenomics Database (CTD): update 2023.” Nucleic acids research, gkac833. 28 Sep. 2022




Databases: PharmacoDB ¢ PharmacoDB

Browse Paclitaxel in PharmacoDB Web app

PharmacoDB Paclitaxel FOA Kol st proes
* Aweb-application database that integrates

multiple cancer pharmacogenomics datasets — ‘::’“ —

profiling approved and investigational drugs Aot Trts 1t s, coscr

across cell lines from diverse tissue types. wana | S
 Offers a standardized cell line, drug identifiers mocawe L

and data format for drug sensitivity i

measurements. e T e
+ Included cell line data from.. T e L

* CCLE, CTRPV2, FIMM, GDSC1, GDSC2, i §

nChiey RONICONZNQE MZXODVADSAN

GRAY, NCI60, PRISM, UHNBreast, gCSI

Nussbidr of exll ""‘E:"““’d"“"" Pacltanel [P b of tissuses trsted with PacEtaxel [per dataset]
ataset]

Statistics of PharmacoDB o
WK [T
= & PAS % o |
10 30 1758 6.314,313 6121 56,149 H I e ]
datasats tissues colllines. experimants genes compounds G ‘,._
(] o ™ e "o L o o
# of call ines. Dot oo

Feizi, Nikta et al. “PharmacoDB 2.0: improving scalability and transparency of in vitro pharmacogenomics analysis.” Nucleic acids research vol. 50,D1 (2022)

Technology

Network analysis technologies




Network analysis technologies

Analytical algorithms describing human gene networks have
been developed for three major tasks in disease research:

1. Disease gene prioritization,
2. Disease module discovery, and
3. Stratification of complex diseases.

Network-based Drug Repurposing Technologies

SNF-cVAE (Knowledge-Based Systems, 2021)
CBPred (Cells, 2019)

DeepDR (Bioinformatics, 2019)

BiFusion (ISMB 2020)

Semantic Teleport (in revision)




The Main Issue for
Network-based Drug Repurposing

Discover drug-disease relationship using
- Drug network
- Gene network

- Disease network + drug-drug network: 1552 nodes, 6,486 edges
+ disease-disease network: 137 nodes, 543 edges
* gene-gene network: 20,945 nodes, ~200,000 edges

Hetionet database:

* drug-gene edges: ~50,000
« diseass-gene edges: ~30,000

Major Issues for Drug Repurposing

* There are multiple ways to learn embedding vectors for drug

* Drug-centered embeddings from Drug-drug, Drug-target, Drug-
disease.

* Then, how to combine different views on drugs?

* Three-way relationship among drug-gene-disease cannot be learned at
once.
* In the end, we need to deduce drug-disease binary relationship.

* Basically, binary relationships are somehow combined on different
layers, hierarchically.




Network-based Drug Repurposing Technologies

SNF-cVAE (Knowledge-Based Systems, 2021)
CBPred (Cells, 2019)

DeepDR (Bioinformatics, 2019)

BiFusion (ISMB 2020)

Semantic Teleport (BioRxiv. In review)

Network-based Drug Repurposing: Cases

Knowledge-Based Systems 212 (2021) 106585

Contents lists available at ScienceDirect

Seipd Knowledge-Based Systems

A
I j \'[. VIER journal homepage: www.elsevier.com/locate/knosys
SNF-CVAE: Computational method to predict drug-disease m
interactions using similarity network fusion and collective variational @&
autoencoder

Tamer N. Jarada“®, Jon G. Rokne ¢, Reda Alhajj abes

* Department of Compuier Science, University aof Calgary, Celgary, Alberta, Canada
n Department of Computer Engineering. Istanbul Medipol University. Istanbul. Turkey
 Department of Health Informatics, Universiry of Southern Denmark, Odense, Denmark

Jarada, Tamer N., Jon G. Rokne, and Reda Alhajj. "SNF-CVAE: computational method to predict drug—disease interactions using
similarity network fusion and collective variational autoencoder."” Knowledge-Based Systems 212 (2021): 106585.




Network-based Drug Repurposing: Cases

SNF-CVAE
* Input:
* Drug-related similarity information
» Drug-disease interactions
* Method:
» Similarity network fusion (SNF)
* Drug similarity network using drug-related data sets and drug-disease interaction dataset.
» Collective variational autoencoder (CVAE)
« Training cVAE with drug similarity (from above) and drug-disease interaction.
» Predicted drug candidates for potentially treating Alzheimer’s disease and Juvenile rheumatoid arthritis.

Jarada, Tamer N., Jon G. Rokne, and Reda Alhajj. "SNF-CVAE: computational method to predict drug—disease interactions using
similarity network fusion and collective variational autoencoder.” Knowledge-Based Systems 212 (2021): 106585.

Network-based Drug Repurposing: Cases
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Jarada, Tamer N., Jon G. Rokne, and Reda Alhajj. "SNF-CVAE: computational method to predict drug—disease interactions using
similarity network fusion and collective variational autoencoder."” Knowledge-Based Systems 212 (2021): 106585.




Network-based Drug Repurposing: Cases

. cells m\:@

Article

Convolutional Neural Network and Bidirectional
Long Short-Term Memory-Based Method for
Predicting Drug-Disease Associations

Ping Xuan 1, Yilin Ye **, Tiangang Zhang %*, Lianfeng Zhao ! and Chang Sun !

1 School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
2 School of Mathematical Science, Heilongjiang University, Harbin 150080, China
*  Correspondence: YeYilinCN@outlook.com (Y.Y.); Hangang_zhang01@126.com (T.Z.);

Tel.: +86-132-4840-5705 (Y.Y.); +86-188-4503-0636 (T.Z.)

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug—disease associations." Cells 8.7 (2019): 705.

Network-based Drug Repurposing: Cases

CBPred
* Input:
* Drug similarity matrix (fingerprint-based)
» Disease similarity matrix (MeSH-based)
+ Goal:
* Enrich paths between drugs and diseases

* Method:

» Learn the association representation of drug-disease pairs from their similarities and
associations.

» Learns path representation of drug-disease pair.
» Provided a list of novel drug-disease associations for drug repositioning

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug—disease associations." Cells 8.7 (2019): 705.




Network-based Drug Repurposing: Cases

CBPred

d; dy dy dy
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Figure 1. Construction of drug-disease heterogeneous network DrDisNet. R and D are the similarity
matrix of drugs and diseases, respectively. A is the association matrix between drugs and diseases,
while AT is the transpose of A.

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug—disease associations." Cells 8.7 (2019): 705.

Network-based Drug Repurposing: Cases

CBPred
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Figure 2. Construction of the framework based on the convolutional neural network and bidirectional
long short-term memory for learning the original and path representations.

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug—disease associations." Cells 8.7 (2019): 705.




Network-based Drug Repurposing: DeepDR

Bioinformatics

JOURNAL ARTICLE
deepDR: a network-based deep learning approach
to in silico drug repositioning g
Xiangxiang Zeng, Siyi Zhu, Xiangrong Liu, Yadi Zhou, Ruth Nussinov, Feixiong Cheng =
Author Notes

Bioinformatics, Volume 35, Issue 24, 15 December 2019, Pages 5191-5198,
https://doi.org/10.1093/bioinformatics/btz418
Published: 22 May 2019 Article history v

Zeng, Xiangxiang, et al. "deepDR: a network-based deep learning approach to in silico drug repositioning." Bioinformatics 35.24 (2019): 5191-5198.

Network-based Drug Repurposing: DeepDR

* Input: Integrated network of 10 different networks:
* one drug-disease,
* one drug-side-effect,
* one drug-target and
* seven drug-drug networks

* Method: A three-step approach for drug repurposing

1. Probabilistic co-occurrence matrix construction by random walks
2. Shifted pointwise mutual information (PPMI) - factorization of co-occurrence matrix for
network representation.
of 10 network representations
for new drug-disease association prediction: uses
. Extracted features from MDA (side (auxiliary?) information)
. Known drug-disease associations

N —

» The predicted drug-disease associations were validated by the ClinicalTrials.gov database

Zeng, Xiangxiang, et al. "deepDR: a network-based deep learning approach to in silico drug repositioning." Bioinformatics 35.24 (2019): 5191-5198.




Network-based Drug Repurposing: DeepDR

(@) Random walk based network representation

p_Q p oom PCO Matrix PPMI Motrtx
Q: 9 YW el
D 0 P seuma
P
3 el -8 | o |
Drug-cissase, drug-protein, drug-skie-effect, d
and seven types of drug-drug similarities  om |

(b) Muiti-modal deep autoencoder based network fusion

Zeng, Xiangxiang, et al. "deepDR: a network-based deep learning approach to in silico drug repositioning." Bioinformatics 35.24 (2019): 5191-5198.

Network-based Drug Repurposing: BiFusion

Bioinformatics

JOURNAL ARTICLE
Toward heterogeneous information fusion:
bipartite graph convolutional networks for in silico
drug repurposing 3
Zichen Wang, Mu Zhou ™, Corey Arnold ™ Author Notes

Bioinformatics, Volume 36, Issue Supplement_1, July 2020, Pages i525-i533,
https://doi.org/10.1093/bioinformatics/btaa437
Published: 13 July 2020

Wang, Zichen, Mu Zhou, and Corey Arnold. "Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing."” Bioinformatics 36.Supplement_1 (2020): i525-i533.




Network-based Drug Repurposing: BiFusion

BiFusion (Wang et al., ISMB 2020)
e Input:
* Drug-protein-disease heterogeneous network

* Method: 3-step deep learning framework

* A bipartite GCN encoder for drug-disease pair embedding

« Bipartite graph attention to protein (gene or protein centric)
» disease~>protein
» drug > protein

« Bipartite graph attention from protein (gene or protein centric)
» protein = disease
* protein = drug

Wang, Zichen, Mu Zhou, and Corey Arnold. "Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing." Bioinformatics 36.Supplement_1 (2020): i525-i533.

Network-based Drug Repurposing: BiFusion

BiFusion (Wang et al., ISMB 2020)

Heterogeneous network of BiFusion

Drug-disease
8330CIB0NS.
Disease Drug
Disease-protein Drug-protein
assocabons. Protwin
eI N e

Wang, Zichen, Mu Zhou, and Corey Arnold. "Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing."” Bioinformatics 36.Supplement_1 (2020): i525-i533.




Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in revision)

bioRyiv

THE PREPRINT SERVER FOR BIOLOGY

Multi-layer guilt-by-association-based drug
repurposing by integrating clinical knowledge on
biological heterogeneous networks

Dongmin Bang'?, Sangsoo Lim?, Sangseon Lee', and Sun Kim'*%*

'Interdiciplinary Program in Bioinformatics, Seoul National University. Seoul, Republic of Korea
*AIGENDRUG Co., Ltd., Seoul, Republic of Korea

*Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea

#Institute of Computer Technology, Seoul National University, Seoul, Republic of Korea

“Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea
“Interdiciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea
“For whom the comrespondence should be: sunkim bicinfo@snu.ac kr

Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)

* Input:
* Drug-gene-disease heterogeneous network
* Method:

« Semantic multi-layer Guilt-by-association
* Implemented by random walk with clinical knowledge-guided teleport
« Teleport is performed to semantically similar neighbor drug/diseases

Guilt-by-Association for Multi-layer Guilt-by-Association for
Protein function inference Drug-Disease association inference
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Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)
* Method overview

= Node sequence generation through teleport-guided random walk

Biological Network Action 1. Network traversing Generated node sequences
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Drug and disease embeddings for prediction

Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)
* Results:
+ State-of-the-art drug-disease association prediction
* Harmonious embedding space of both clinical and biological contexts
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Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)

¢ Results:

» Drug repurposing for breast carcinoma and Alzheimer’s disease: well supported by literatures

Breast Carcinoma

Rank  Drug Original Indication Avg. prob.  SD Evidences
1 Hydroxyurea CML, cancer of head and neck, sickle cell anemia 0.9868 0.028 57
2 Irinotecan Colorectal cancer, SCLC, NSCLC 0.9854 0021 o062
3 Carmustine Brain tumors, multiple myeloma, Hodgkin disease, NHL ~ (.9851 0.026 6364
4 Clofarabine ~ ALL 0.9817 0022 660
7 Etoposide Germ cell tumors, Kaposi sarcoma, SCLC 0.9777 0038 0164
9 Vinblastine Hodgkin disease, Lymphoma, NHL 0.9722 0.037 0164
10 Erlotinib NSCLC, Pancreatic cancer 0.9711 0.069 6769
Alzheimer’s disease
Rank Drug Original Indication Avg. prob.  SD Evidences
1 Melatonin Blind vision, sleep disorders 0.9953 0.006 07T
3 Amantadine  Extrapyramidal disorders, Parkinson’s disease 0.9926 0016 727
4 Piribedil Dizziness, Parkinson’s disease 0.9887 0.018 7476
7 Pramipexole  Parkinson’s disease, restless legs syndrome 0.9822 0027 77
9 Phenibut Anxiety 0.9809 0.042 80,81
10 Fluoxetine  Bipolar disorder, Depressive disorder 0.9799 0036 828

Summary of Drug Repurposing

* There are multiple ways to learn embedding vectors for drug

Drug-centered embeddings from Drug-drug, Drug-target, Drug-disease.
Then, how to combine different views on drugs?

deepDR: Multi-modal deep autoencoder

SNF-cVAE: similarity network fusion

DreamWalk: semantic random walks

* Three-way relationship among drug-gene-disease cannot be learned at once.

* Inthe end, we need to deduce drug-disease binary relationship.

Basically, binary relationships are somehow combined on different layers, hierarchically.
deepDR: Multi-modal deep autoencoder; then cVAE for drug-disease

SNF-cVAE: similarity network fusion; then cVAE for drug-disease

BiFusion: protein-centric bipartite graph attention twice; then MLP for drug-disease

Zhang, Zhao et. al: row pairing from drug-drug, drug-disease, disease-drug matrices; path
generation by aligning paired vectors; then CNN + LSTM for drug-disease

DreamWalk: semantic random walks; then drug-disease embedding in the same space;
then similarity between drug vector and disease vector for drug-disease
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