KSBI-BIML 2024

Bioinformatics & Machine Learning(BIML) Workshop for Life and Medical Scientists

생명정보학 & 머신러닝 워크샵 (온라인)

Drug target prediction and drug repositioning with graph learning

김선 / 이상선 _ 서울대학교

본 강의 자료는 한국생명정보학회가 주관하는 BIML 2024 워크샵 온라인 수업을 목적으로 제작된 것으로 해당 목적 이외의 다른 용도로 사용할 수 없음을 분명하게 알립니다.

이를 다른 사람과 공유하거나 복제, 배포, 전송할 수 없으며 만약 이러한 사항을 위반할 경우 발생하는 모든 법적 책임은 전적으로 불법 행위자 본인에게 있음을 경고합니다.

KSBi-BIML 2024

Bioinformatics & Machine Learning(BIML) Workshop for Life and Medical Scientists

안녕하십니까?

한국생명정보학회가 개최하는 동계 교육 워크샵인 BIML-2024에 여러분을 초대합니다. 생명정보학분야의 연구자들에게 최신 동향의 데이터 분석기술을 이론과 실습을 겸비해 전달하고자 도입한전문 교육 프로그램인 BIML 워크샵은 2015년에 시작하여 올해로 벌써 10년 차를 맞이하게 되었습니다. BIML 워크샵은 국내 생명정보학 분야의 최초이자 최고 수준의 교육프로그램으로 크게인공지능과 생명정보분석 두 개의 분야로 구성되어 있습니다. 올해 인공지능 분야에서는 최근생명정보 분석에서도 응용이 확대되고 있는 다양한 인공지능 기반 자료모델링 기법들에 대한 현장강의가 진행될 예정이며, 관련하여 심층학습을 이용한 단백질구조예측, 유전체분석, 신약개발에대한 이론과 실습 강의가 함께 제공될 예정입니다. 또한 단일세포오믹스, 공간오믹스, 메타오믹스, 그리고 롱리드염기서열 자료 분석에 대한 현장 강의는 많은 연구자의 연구 수월성 확보에 큰 도움을 줄 것으로 기대하고 있습니다.

올해 BIML의 가장 큰 변화는 최근 연구 수요가 급증하고 있는 의료정보자료 분석에 대한 현장 강의를 추가하였다는 것입니다. 특히 의료정보자료 분석을 많이 수행하시는 의과학자 및 의료정보 연구자들께서 본 강좌를 통해 많은 도움을 받으실 수 있기를 기대하고 있습니다. 또한 다양한 생명정보학분야에 대한 온라인 강좌 프로그램도 점차 증가하고 있는 생명정보 분석기술의 다양화에 발맞추기위해 작년과 비교해 5강좌 이상을 신규로 추가했습니다. 올해는 무료 강좌 5개를 포함하여 35개이상의 온라인 강좌가 개설되어 제공되며, 연구 주제에 따른 연관된 강좌 추천 및 강연료 할인프로그램도 제공되며, 온라인을 통한 Q&A 세션도 마련될 예정입니다. BIML-2024는 국내 주요 연구중심 대학의 전임 교원이자 각 분야 최고 전문가들의 강의로 구성되었기에 해당 분야의 기초부터최신 연구 동향까지 포함하는 수준 높은 내용의 강의가 될 것이라 확신합니다.

BIML-2024을 준비하기까지 너무나 많은 수고를 해주신 운영위원회의 정성원, 우현구, 백대현, 김태민, 김준일, 김상우, 장혜식, 박종은 교수님과 KOBIC 이병욱 박사님께 커다란 감사를 드립니다. 마지막으로 부족한 시간에도 불구하고 강의 부탁을 흔쾌히 허락하시고 훌륭한 현장 강의와 온라인 강의를 준비하시는데 노고를 아끼지 않으신 모든 강사분들께 깊은 감사를 드립니다.

2024년 2월

한국생명정보학회장 이 인 석

강의개요

Drug Target Prediction and Drug Repositioning with Graph Learning

약물-표적 관계 예측은 신약 개발 초기 단계에 필수적인 기술이며, 기존의 약물을 재활용하는 약물 재창출 분야에도 밀접한 관련이 있는 기술이다. 그렇다면, 약물의 표적은 어떻게 예측할 수 있을까? 이를 바탕으로 약물 재창출은 어떻게 할 수 있을까? In silico 기반의 약물-표적 관계 예측은 약물과 약물, 약물과 질병, 질병과 유전자 등 여러 가지 상호작용을 고려해야 하기에 많은 어려움이 따른다.

본 강의에서는 약물, 질병, 유전자 간 상호작용을 그래프로 학습하여 약물-표적 예측 및 약물 재창출을 설명한다. 먼저 Random walk, Network propagation, Graph neural network 등 기본적인 그래프 분석 기법들을 배우고, 이를 약물-표적 상관관계 분석/예측 및 약물 재창출 분야에서 효율적이고 효과적으로 활용한 최신 사례를 소개한다.

강의는 다음의 내용을 포함한다.

- 그래프 마이닝 알고리즘
- Graph neural network 기반의 딥러닝 기술
- 약물-표적 관계 예측(Drug-Target Interaction) 사례 및 기술
- 약물 재창출(Drug repositioning) 사례 및 기술
- * 교육생준비물: X (이론강의)
- * 강의 난이도: 중급
- * 강의: 김선 교수 (서울대학교 컴퓨터공학부) / 이상선 컴퓨터공학 박사

Curriculum Vitae

Speaker Name: Sun Kim, Ph.D.

▶ Personal Info

Name Sun Kim Title Professor

Affiliation Seoul National University (SNU)

▶ Contact Information

Address Department of Computer Science and Engineering,

301-421, Seoul National University, 1, Gwanak-ro,

Gwanak-gu, Seoul, 08826

Email sunkim.bioinfo@snu.ac.kr

Research Interest

Machine Learning, Deep Learning, Multi-omics, Bioinformatics, Al-drug discovery

Educational Experience

1985 B.S., Computer Science, Seoul National University

1987 M.S., Computer Science, KAIST

1997 Ph.D., Computer Science, University of Iowa

Professional Experience

1998-2001	Senior Computer Scientist, DuPont Central Research
2001-2011	Assistant/Associate Professor, School of Informatics and Computing, Indiana University
2009-2011	Chair, School of Informatics and Computing, Indiana University
2011-2021	Director, Bioinformatics Institute, Seoul National University
2011-	Professor, Department of Computer Science and Engineering & Interdisciplinary
	Program in Bioinformatics, Seoul National University
2022-	Research Director, MOGAM Institute for Biomedical Research

Selected Publications (5 maximum)

- 1. Lee, D., Yang, J., & Kim, S. (2022). Learning the histone codes with large genomic windows and three-dimensional chromatin interactions using transformer. Nature Communications, 13(1), 1-19.
- 2. Lim, S., Lu, Y., Cho, C. Y., Sung, I., Kim, J., Kim, Y., ... & Kim, S. (2021). A review on compound-protein interaction prediction methods: data, format, representation and model. Computational and Structural Biotechnology Journal, 19, 1541-1556.
- 3. Rhee, S., Seo, S., & Kim, S. (2018, July). Hybrid approach of relation network and localized graph convolutional filtering for breast cancer subtype classification. In Proceedings of the 27th International Joint Conference on Artificial Intelligence (pp. 3527-3534).
- 4. Seo, S., Oh, M., Park, Y., & Kim, S. (2018). DeepFam: deep learning based alignment-free method for protein family modeling and prediction. Bioinformatics, 34(13), i254-i262.
- 5. Jo, K., Jung, I., Moon, J. H., & Kim, S. (2016). Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways. Bioinformatics, 32(12), i128-i136.

Curriculum Vitae

Speaker Name: Sangseon Lee, Ph.D.

▶ Personal Info

Name Sangseon Lee

Title Post-doc research fellow

Affiliation Institute of Computer Technology,

Seoul National University

▶ Contact Information

Address 220-653, Seoul National University, 1, Gwanak-ro,

Gwanak-gu, Seoul, 08826

Email sangseon486@snu.ac.kr

Research Interest

Translational bioinformatics, Machine learning and computational genomics

Educational Experience

2013 B.S. in Computer Engineering, Seoul National University, Korea 2020 Ph.D. in Computer Engineering, Seoul National University, Korea

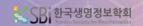
Professional Experience

2020 Postdoctoral research fellow, SNU Bioinformatics Institute

2020-2021 Postdoctoral research fellow, SNU BK21 FOUR Intelligence Computing 2021- Postdoctoral research fellow, SNU Institute of Computer Technology

Selected Publications (5 maximum)

- 1. Lee, S., Lee, D., Piao, Y., & Kim, S. (2022). SPGP: Structure Prototype Guided Graph Pooling. NeurIPS 2022 Workshop New Frontiers in Graph Learning.
- 2. Piao, Y., Lee, S., Lee, D., & Kim, S. (2022, June). Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 10, pp. 11165-11173).
- 3. Lee, S., Lim, S., Lee, T., Sung, I., & Kim, S. (2020). Cancer subtype classification and modeling by pathway attention and propagation. Bioinformatics, 36(12), 3818-3824.
- 4. Lee, S., Lee, T., Noh, Y. K., & Kim, S. (2019). Ranked k-spectrum kernel for comparative and evolutionary comparison of exons, introns, and cpg islands. IEEE/ACM transactions on computational biology and bioinformatics, 18(3), 1174-1183.
- 5. Lee, S., Park, Y., & Kim, S. (2017). MIDAS: mining differentially activated subpaths of KEGG pathways from multi-class RNA-seq data. Methods, 124, 13-24.



Drug Target Prediction and Drug Repositioning with Graph Learning

김선, 이상선

서울대학교 목암생명과학연구소 AIGENDRUG Co. Ltd.

강의 개요

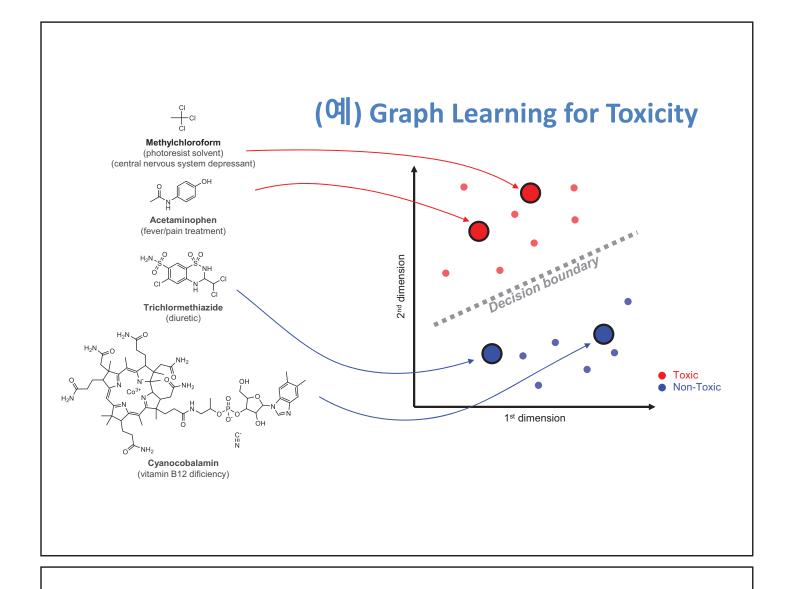
- Part1 (김선): 강의개요 (주요 논점)
- Part2 (이상선): Preliminary of Graph Learning
- Part3 (이상선): Graph Learning for Drug Target Identification
- Part4 (김선): Graph Learning for Drug Repurposing

PART 1 강연 개요

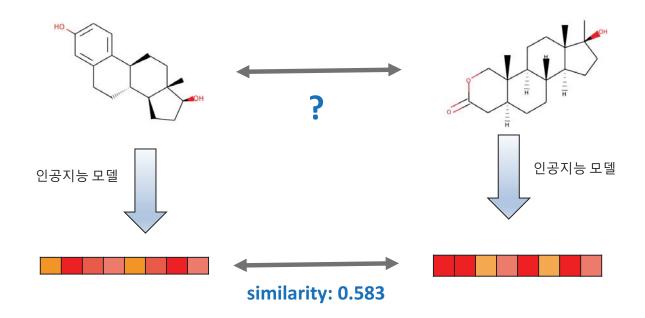
3

Why Learning Drug Representation is Difficult?

- (Issue 1) Compound graph size vary significantly, which is quite difficult to deal with using GNN.
- (Issue 2) Drug has quite a number of properties and learning drug representation is intrinsically multi-task learning.
- Considering two issues together, it is really an open problem to learn drug representation. These challenges are recurring in this lecture.



Why Learning Drug Representation is Useful?

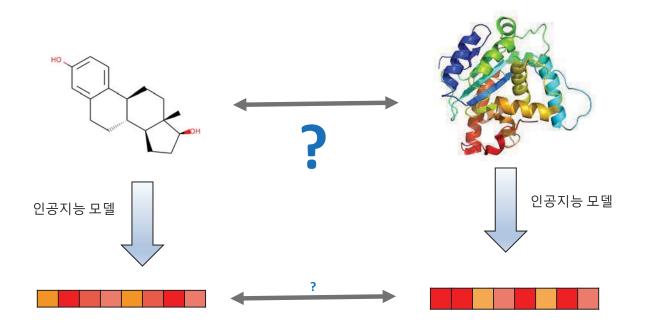


Learning Drug-Target Interaction

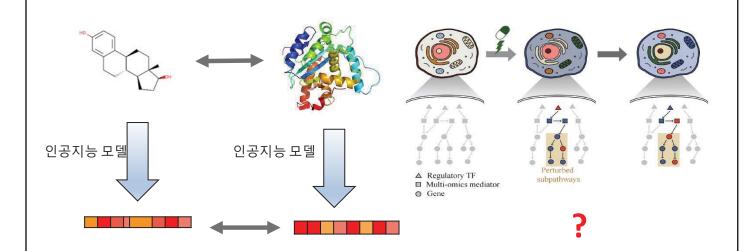
- Given that learning drug representation is difficult, it becomes even more difficult to learn drug-target interaction (DTI) because
 - Drug representation needed to be learned.
 - Representation of target proteins needs to be learned.
- Well, another very complicating factor.
 - <u>DTI should consider what happens after a drug targets a protein (gene)</u> because genes function as a group in a very complex interaction.

7

Summary: Drug-Target Interaction



True DTI: Compound-Protein-Cell



9

Drug Re-positioning is Learning Representation of Heterogenous Networks.

- Drug repositionign is to discover <u>unknown association between</u> <u>drug and disease.</u>
- Association between drug and disease is to discover <u>distant</u> relationship.
- Thus, we need help!
- Forutnately, we can use gene networks for this.
- Weel, this becomes to learn <u>representation of three heterogenous</u> networks: drug gene disease.

PART 2 Preliminary of Graph Learning

11

Contents

- What is Graphs?
 - Example of Graphs in Bioinformatics
- Preliminary
 - Random Walk-Based Node Embedding
 - Network Propagation
 - Network Centralities / Clustering
 - VAE / Collective VAE
 - Matrix Factorization
 - Graph Neural Network

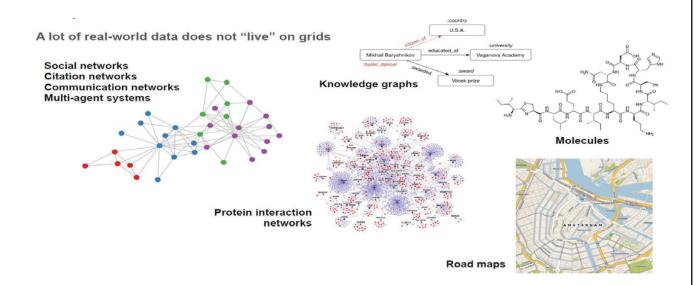
What is Graph?

- General concept of graph
- Example of graphs in Bioinformatics

13

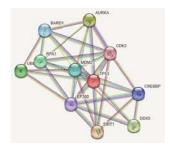
Graph

- [Mathematics] A structure made of vertices and edges, G=(V, E)
- [Abstract Data Type] An abstract data type representing relations or connections

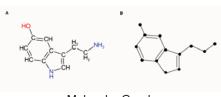


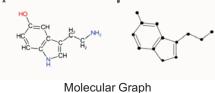
Example of Graphs in Bioinformatics - related to DTI & DR

Relationships between genes, drugs, or diseases

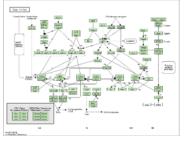


Protein-Protein Interaction (PPI) Network

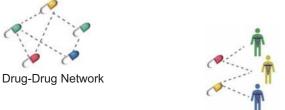




Protein-Disease Network



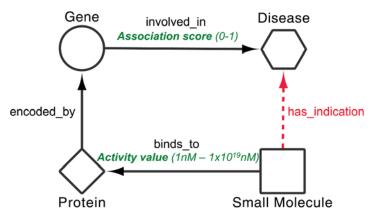
Biological Pathway



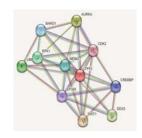
Drug-Disease Network

Example of Graphs in Bioinformatics - related to DTI & DR

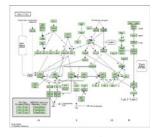
- PPI network & Biological pathway
 - · Represents biological mechanisms via gene interactions
 - Can be utilized for learning states of data (ex. patient, cell-line, ...)
- Roles in the DTI & DR tasks
 - · Identification of patients or cell-lines through multi-omics data
 - Bridge between drugs and disease



(Mullen, Joseph, et al., PloS One, 2016)

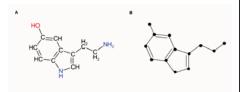


Protein-Protein Interaction (PPI) Network



Biological Pathway

Example of Graphs in Bioinformatics - related to DTI & DR



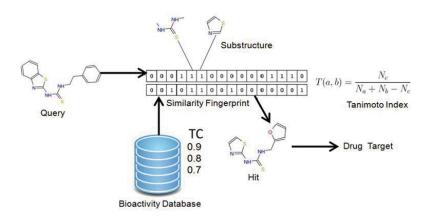
Molecular Graph

Molecular Graph

- · Represents information of drug or small molecule itself
- Atom types, Bond types, Atom-Atom distance, Bond-Bond angles, ...

Roles in the DTI & DR tasks

- Used as inputs for learning drug's structure, function, properties, ...
- · Used as ingredients for calculating drug-drug similarities



(https://www.intechopen.com/chapters/52373)

Example of Graphs in Bioinformatics - related to DTI & DR

• Drug, Gene, Disease Network

Association between drugs, genes, and diseases

Roles in the DTI & DR tasks

- Main inputs for learning drug targets and repurposing diseases
- DTI: which drugs and genes interact?
- DR: which drugs are used for other diseases?
 - Drug-disease association
 - Discover novel or new targets of approved drugs

Protein-Disease Network

Drug-Disease Network

Preliminary for Graph Learning

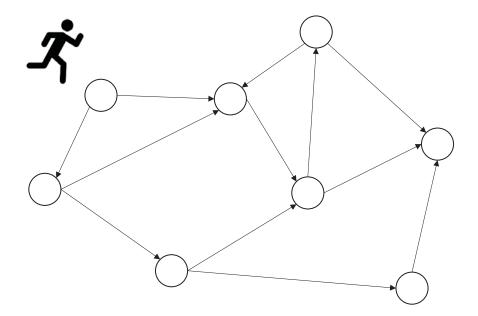
- Random Walk-based Node Embedding
- Network Propagation
- Network Centralities / Clustering
- VAE / Collective VAE
- Matrix Factorization
- Graph Neural Network

10

Random Walk-based Node Embedding

Random walk

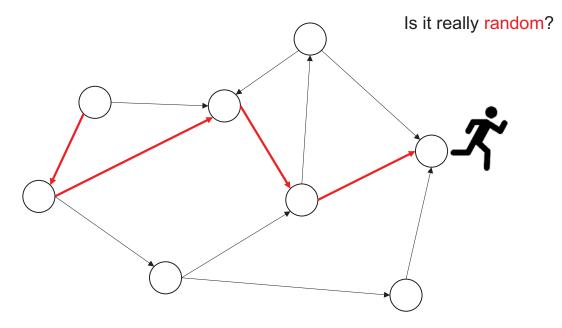
• An agent in the graph moves "randomly" along the graph topology to explore different nodes.



21

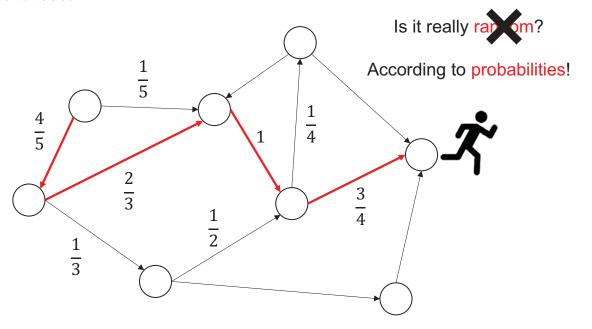
Random walk

• An agent in the graph moves "randomly" along the graph topology to explore different nodes.



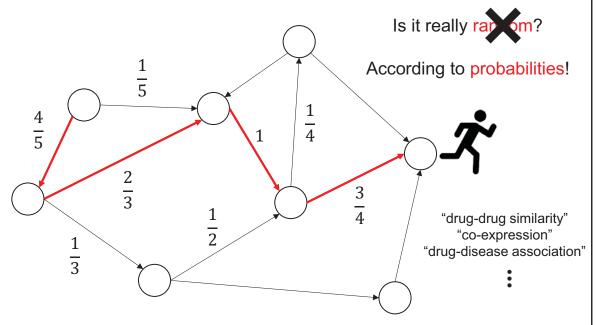
Random walk

• An agent in the graph moves "randomly" along the graph topology to explore different nodes.



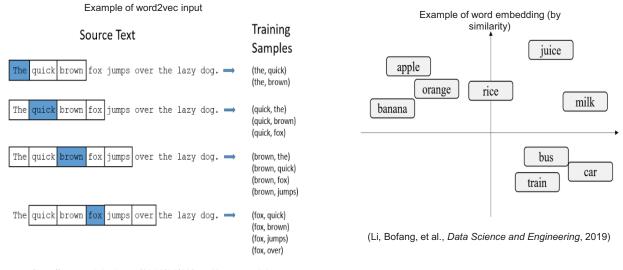
Random walk

• An agent in the graph moves "randomly" along the graph topology to explore different nodes.



24

- Inspired by word embedding in natural language processing
 - · word2vec: learn word representations by co-occurrence in the sentences
 - · Predict context words using a center word

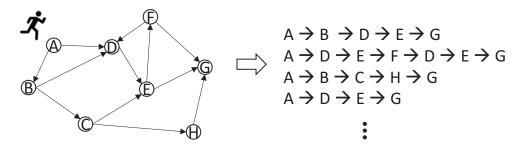


(http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/)

25

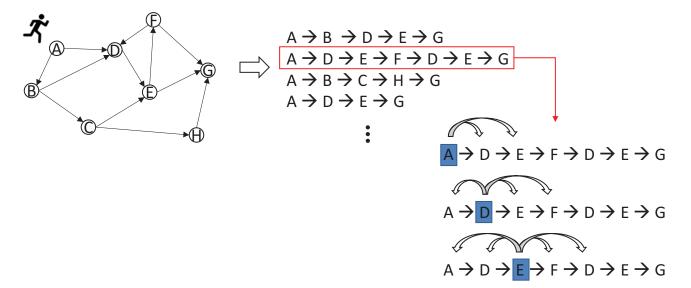
Random walk-based Node Embedding

- How to get the sentences from a graph?
 - · Random walk!



26

- How to get the sentences from a graph?
 - · Random walk!

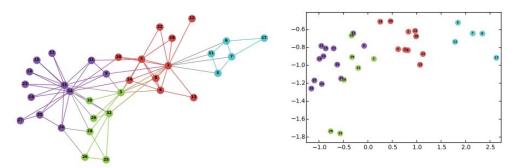


Make sentences by considering node co-occurrences

27

Random walk-based Node Embedding

- DeepWalk
 - · Generate node embeddings using random walks



(a) Input: Karate Graph

(b) Output: Representation

- Exploration of graph
 - DFS: Depth-First Search
 - BFS: Breadth-First Search

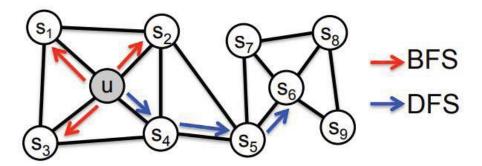
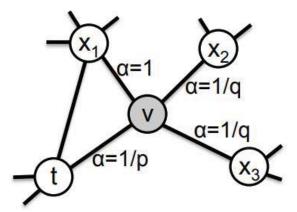


Figure 1: BFS and DFS search strategies from node u (k = 3).

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

Random walk-based Node Embedding

- · Exploration of graph with different probabilities
 - The walk just transitioned from t to v and is now evaluating its next step out of node v.
 - Edge labels indicate search biases α.



- Exploration of graph with different probabilities
 - The walk just transitioned from t to v and is now evaluating its next step out of node v.
 - Edge labels indicate search biases α .

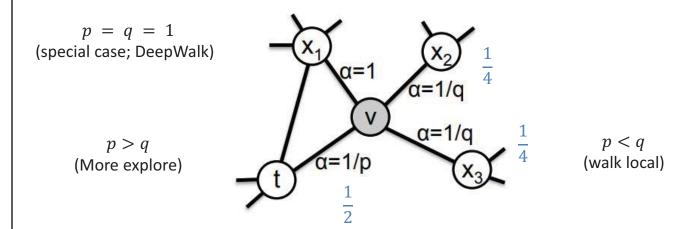
$$p=q=1 \label{eq:continuous} \text{(special case; DeepWalk)}$$

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

Random walk-based Node Embedding

- · Exploration of graph with different probabilities
 - The walk just transitioned from t to v and is now evaluating its next step out
 of node v.
 - Edge labels indicate search biases α .

- Exploration of graph with different probabilities
 - The walk just transitioned from t to v and is now evaluating its next step out of node v.
 - Edge labels indicate search biases α .



(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

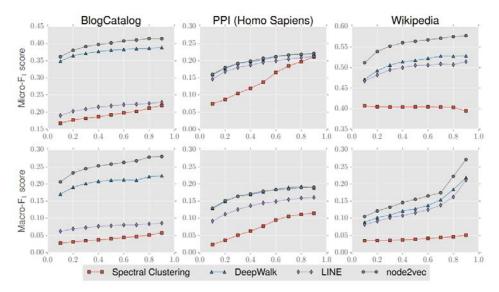
Random walk-based Node Embedding

- Exploration of graph with different probabilities
 - The walk just transitioned from t to v and is now evaluating its next step out
 of node v.
 - Edge labels indicate search biases α .

"node2vec"

(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

- · Exploration of graph with different probabilities
 - The walk just transitioned from t to v and is now evaluating its next step out of node v.
 - Edge labels indicate search biases α .

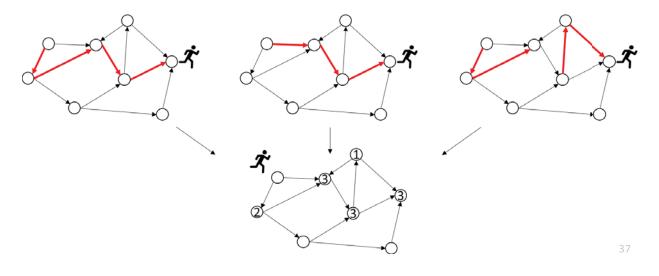


(Grover, Aditya, and Jure Leskovec., ACM SIGKDD, 2016.)

Network Propagation

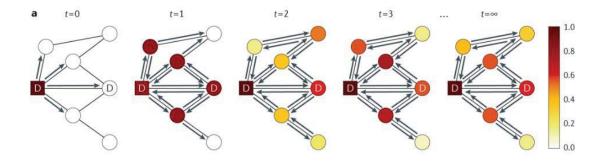
Network Propagation

- Random walks are generated by transition probabilities.
 - The number of random walks is the number of samples used by the model (DeepWalk, node2vec).
- So what if we create an infinite number of random walks of a certain length from one starting point and then measure the frequency of nodes observed in the walks?



Network Propagation

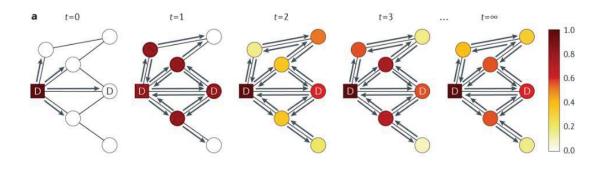
- Propagate information of known nodes (= seeds) via network topology
- Until certain steps, the amount of information (or flow) will be converged



Network Propagation

- Propagate information of known nodes (= seeds) via network topology
- Until certain steps, the amount of information (or flow) will be converged
- Random walk with re-start (RWR)

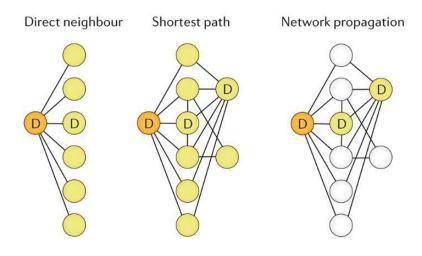
$$p(t+1) = \alpha \times p(0) + (1-\alpha) \times W \times p(t)$$



(Cowen, Lenore, et al., Nature Reviews Genetics, 2017)

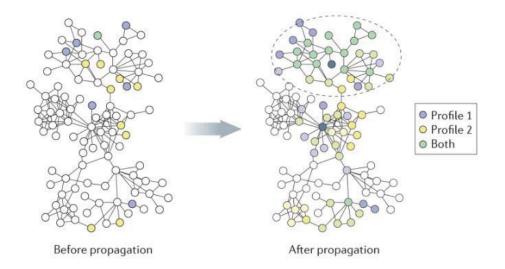
Advantages of Network Propagation

- Looking at more distant neighbours that are up to two steps away (yellow; middle panel) again introduces many false positives.
- Network propagation overcomes these problems by simultaneously considering all paths between genes (yellow; right panel).



Advantages of Network Propagation

- Network propagation considers and aggregates influence of all seeds via network topology
- · It can capture informative clusters of interest

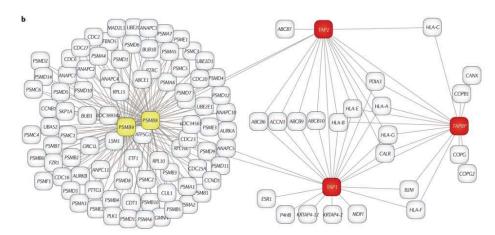


41

(Cowen, Lenore, et al., Nature Reviews Genetics, 2017)

Advantages of Network Propagation

- Propagation of the signal from any of the three known disease genes (red) ranks the other known disease genes very highly, owing to the many paths between them.
- Genes in yellow are ranked highly by alternative network analysis methods (which consider direct neighbours or shortest paths); however, these are false positives.



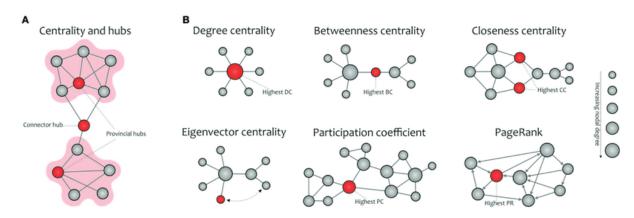
42

Network Centralities / Clustering

43

Network Centralities

- **Centrality** assign numbers or rankings to nodes within a graph corresponding to their network position.
- "What characterizes an important vertex?" → How to define "important"?



Farahani, Farzad V., Waldemar Karwowski, and Nichole R. Lighthall. "Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review." frontiers in Neuroscience (2019)

Network Centralities

1. Degree Centrality

- defined as the number of links incident upon a node

2. Closeness Centrality

- is the average length of the shortest path between the node and all other nodes in the graph.

3. Betweenness Centrality

- the number of times a node acts as a bridge along the shortest path between two other nodes.

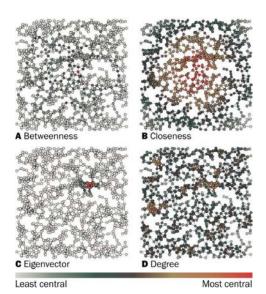
4. Eigenvector Centrality

- Measure of the influence of a node in a network.
- Measured by calculating the eigenvector of adjacency matrix
- Google's PageRank is based on the normalized eigenvector centrality

Farahani, Farzad V., Waldemar Karwowski, and Nichole R. Lighthall. "Application of graph theory for identifying connectivity patterns in human brain networks: a systematic review." frontiers in Neuroscience (2019)

45

Network Centralities



Different scores are assigned for different centralities

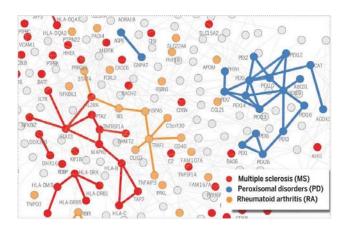
- A centrality which is optimal for one application is often sub-optimal for a different application.
- The optimal measure depends on the network structure of the most important vertices
- Complex networks (e.g. disease networks) have heterogeneous topology; ranking its nodes with centrality possesses limitations [2].

[1] Wikipedia: Network Centrality (https://en.wikipedia.org/wiki/Centrality#/media/File:Wp-01.png, retrieved 2022-11-15)
[2] Lawyer, Glenn. "Understanding the influence of all nodes in a network." Scientific reports 5.1 (2015): 1-9.

Network Clustering

Disease are interplay of multiple molecular processes

- Disease-associated proteins interact with each other and cluster to form disease modules
- Network clustering methods are utilized for detecting communities and modules



Menche, Jörg, et al. "Uncovering disease-disease relationships through the incomplete interactome." Science 347.6224 (2015): 1257601.

Network Clustering

Widely-used Network clustering algorithms

1. k-means clustering

- partitions the graph into k clusters based on the location of the nodes such that their distance from the cluster's mean (centroid) is minimum
- The distance is defined using various metrics as Euclidean distance, Euclidean-squared distance, Manhattan distance, or Chebyshev distance.

yworks: Clustering Graphs and Networks, https://www.yworks.com/pages/clustering-graphs-and-networks)

Network Clustering

Widely-used Network clustering algorithms

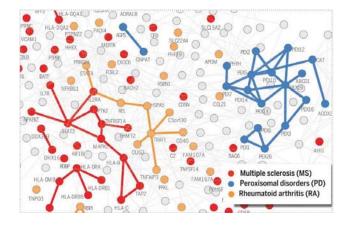
- 2. Hierarchical clustering
 - Partitions the graph into a hierarchy of clusters.
 - The result is a dendrogram which can be cut based on a given cut-off value.

yworks: Clustering Graphs and Networks, https://www.yworks.com/pages/clustering-graphs-and-networks)

Network Clustering

* Limitations of disease module-based approaches

- available interactome and disease-related gene information are incomplete, and do have sufficient coverage to map out disease modules



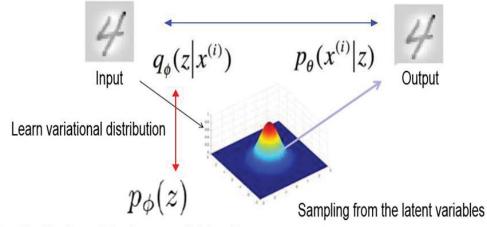
Menche, Jörg, et al. "Uncovering disease-disease relationships through the incomplete interactome." Science 347.6224 (2015): 1257601.

VAE / Collective VAE

51

Variational Auto-Encoder (VAE)

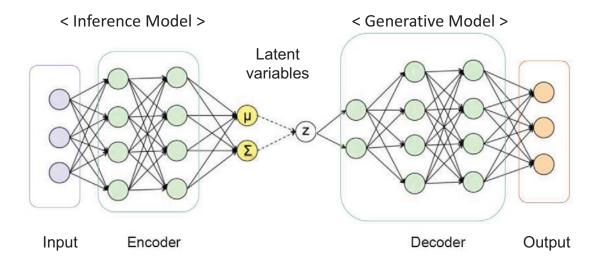
• A generative model that reconstructs input data from latent variables



Prior distribution of the latent variables Z

Variational Auto-Encoder (VAE)

A generative model that reconstructs input data from latent variables



Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv preprint arXiv:1312.6114 (2013).

53

Collective VAE

- Proposed model for item recommendation
- Simultaneously recover user ratings (main task) and side information
- Can be utilized for DTI & DR
 - Main task: drug-disease association
 - Side Information: drug information

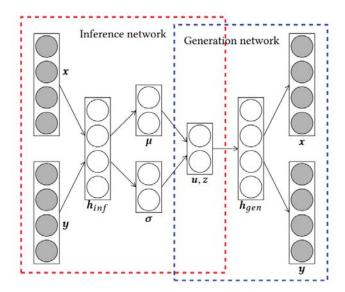


Figure 1: Collective Variational Autoencoder

(Chen, Yifan, and Maarten de Rijke, *Proceedings of the 3rd workshop on deep learning for recommender systems*, 2018.)

Matrix Factorization

55

Matrix Factorization

- A class of collaborative filtering algorithms used in recommender systems.
- Decompose a matrix into tow lower dimensional matrices
 - · Learn low dimensional latent embeddings of row/column

$$A \approx UV^T$$

$$A \in R^{m \times n} \quad U \in R^{m \times d} \quad V \in R^{n \times d} \quad m,n \gg d$$

Matrix Factorization

• Minimize difference of A and UV^T

$$\min_{U \in \mathbb{R}^{m imes d}, \; V \in \mathbb{R}^{n imes d}} \sum_{(i,j) \in \mathrm{obs}} (A_{ij} - \langle U_i, V_j
angle)^2$$

57

https://developers.google.com/machine-learning/recommendation/collaborative/matrix

Matrix Factorization

- Minimize difference of A and UV^T
- How to handle unobserved cases?
 - · Assume the value as 0.
 - · Minimize the loss function with different weights

$$\min_{U \in \mathbb{R}^{m imes d}, \; V \in \mathbb{R}^{n imes d}} \sum_{(i,j) \in ext{obs}} (A_{ij} - \langle U_i, V_j
angle)^2 + w_0 \sum_{(i,j)
otin ext{obs}} (\langle U_i, V_j
angle)^2$$

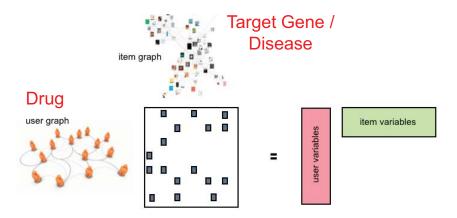
58

Matrix Factorization (≈ Matrix Completion)

Standard matrix factorization is transductive.

$$\min_{W,H} \sum_{(i,j) \in \mathcal{Q}} \left(P_{ij} - \left(W H^T \right)_{ij} \right)^2 + \frac{\lambda}{2} \left(\left\| W \right\|_{\text{F}}^2 + \left\| H \right\|_{\text{F}}^2 \right)$$
To provent

To prevent overfitting



Example of item recommendation

59

Beyond Low Rank Matrix Factorization | Center for Big Data Analytics (utexas.edu)

Matrix Factorization (≈ Matrix Completion)

Standard matrix factorization is transductive.

$$\min_{W,H} \sum_{(i,j) \in \Omega} \left(P_{ij} - \left(W H^T \right)_{ij} \right)^2 + \frac{\lambda}{2} \left(\| W \|_{\text{F}}^2 + \| H \|_{\text{F}}^2 \right)$$

To prevent overfitting

 All matrix completion approaches suffer from extreme sparsity of the observed matrix and the cold-start problem.

Easy to learn & predict $\frac{\text{non cold-starting users}}{\text{users}}$ $R_{1,2}$ $R_{1,3}$ Hard to learn & predict $\frac{\text{cold-starting users}}{\text{users}}$ $R_{4,2}$ $R_{4,3}$

60

Matrix Factorization (≈ Matrix Completion)

Standard matrix factorization is transductive.

$$\min_{W,H} \sum_{(i,j) \in \Omega} \left(P_{ij} - \left(W H^T \right)_{ij} \right)^2 + \frac{\lambda}{2} \left(\| W \|_{\text{F}}^2 + \| H \|_{\text{F}}^2 \right)$$

To prevent overfitting

- Inductive Matrix Factorization (or Completion)
 - Can be interpreted as a generalization of the transductive multi-label formulation

$$\min_{W,H} \sum_{(i,j)\in\Omega} \iota(P_{ij}, \underline{x_i}^T W \underline{H}^T y_j) + \frac{\lambda}{2} (\|W\|_F^2 + \|H\|_F^2)$$

61

Matrix Factorization (≈ Matrix Completion)

- Inductive Matrix Factorization (or Completion)
 - Can be interpreted as a generalization of the transductive multi-label formulation

$$\min_{W,H} \sum_{(i,j)\in\Omega} \iota(P_{ij}, x_i^T W H^T y_j) + \frac{\lambda}{2} \left(\|W\|_F^2 + \|H\|_F^2 \right)$$

- Positive-Unlabeled (PU) Matrix Completion
 - In case of DTI task, we collect positive pairs of drug and target protein.
 - · It is difficult to "well-defined negative" data.

$$\begin{split} \min_{W,H} & \sum_{(i,j) \in \mathcal{Q}^+} \left(P_{ij} - x_i W H^T y_j^T \right)^2 + \alpha \sum_{(i,j) \in \mathcal{Q}^-} \left(P_{ij} - x_i W H^T y_j^T \right)^2 \\ & + \lambda \Big(\|W\|_{\text{F}}^{\ 2} + \|H\|_{\text{F}}^{\ 2} \Big) \end{split} \qquad \text{α: the penalty of the unobserved entries toward zero} \end{split}$$

62

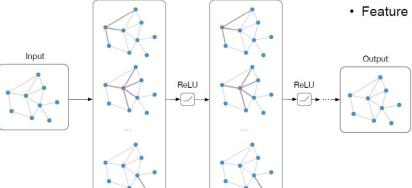
Graph Neural Network

Graph Neural Network

The bigger picture:

Notation: G = (A, X)

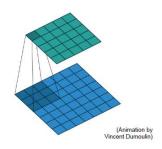
- Adjacency matrix $\mathbf{A} \in \mathbb{R}^{N imes N}$
- Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes F}$

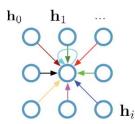


Main idea: Pass messages between pairs of nodes & agglomerate

Recap: Convolutional Neural Networks (on grids)

Single CNN layer with 3x3 filter:





Update for a single pixel:

- Transform messages individually $\mathbf{W}_i\mathbf{h}_i$
- Add everything up $\sum_i \mathbf{W}_i \mathbf{h}_i$

 $\mathbf{h}_i \in \mathbb{R}^F$ are (hidden layer) activations of a pixel/node

Full update:

$$\mathbf{h}_{4}^{(l+1)} = \sigma \left(\mathbf{W}_{0}^{(l)} \mathbf{h}_{0}^{(l)} + \mathbf{W}_{1}^{(l)} \mathbf{h}_{1}^{(l)} + \dots + \mathbf{W}_{8}^{(l)} \mathbf{h}_{8}^{(l)} \right)$$

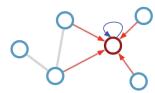
*slide from Thomas Kipf, **University of Amsterdam**

Graph Convolutional Networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this undirected graph:

Calculate update for node in red:



Update rule:

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$

Scalability: subsample messages [Hamilton et al., NIPS 2017]

 \mathcal{N}_i : neighbor indices c_{ij} : norm. constant (fixed/trainable)

Graph Convolutional Networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this undirected graph:

Calculate update for node in red:

Update

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$

Scalability: subsample messages [Hamilton et al., NIPS 2017]

Vectorized form

$$\mathbf{H}^{(l+1)} = \sigma \left(\mathbf{H}^{(l)} \mathbf{W}_0^{(l)} + \tilde{\mathbf{A}} \mathbf{H}^{(l)} \mathbf{W}_1^{(l)} \right)$$

with
$$\tilde{\mathbf{A}} = \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$$

Or treat self-connection in the same way:

$$\mathbf{H}^{(l+1)} = \sigma\left(\hat{\mathbf{A}}\mathbf{H}^{(l)}\mathbf{W}_{1}^{(l)}\right)$$

with
$$\hat{\mathbf{A}} = ilde{\mathbf{D}}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I}_N) ilde{\mathbf{D}}^{-\frac{1}{2}}$$

 \mathcal{N}_i : neighbor indices c_{ij} : norm. constant (fixed/trainable)

*slide from Thomas Kipf, University of Amsterdam

Graph Convolutional Networks (GCNs)

Kipf & Welling (ICLR 2017), related previous works by Duvenaud et al. (NIPS 2015) and Li et al. (ICLR 2016)

Consider this undirected graph:

Calculate update for node in red:



Update

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{h}_{i}^{(l)} \mathbf{W}_{0}^{(l)} + \sum_{j \in \mathcal{N}_{i}} \frac{1}{c_{ij}} \mathbf{h}_{j}^{(l)} \mathbf{W}_{1}^{(l)} \right)$$

Scalability: subsample messages [Hamilton et al., NIPS 2017]

Desirable properties:

- · Weight sharing over all locations
- · Invariance to permutations
- Linear complexity O(E)
- Applicable both in transductive and inductive settings

Limitations:

- Requires gating mechanism / residual connections for depth
- · Only indirect support for edge features

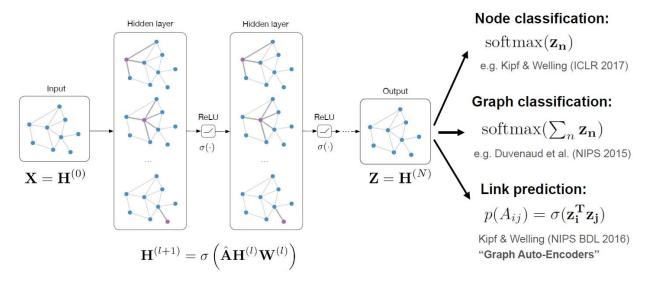
 \mathcal{N}_i : neighbor indices c_{ij} : norm. constant (fixed/trainable)

68

*slide from Thomas Kipf, University of Amsterdam

Classification and link prediction with GNNs/GCNs

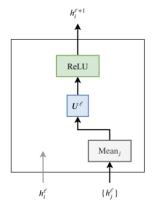
Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

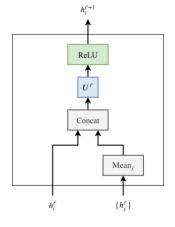


*slide from Thomas Kipf, University of Amsterdam

Various GNNs - Isotropic

Different Aggregation and Update functions are utilized for GNNs





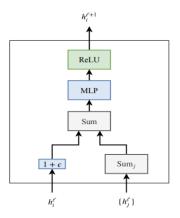


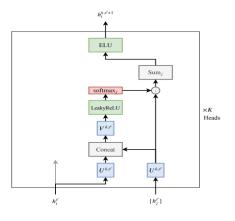
Figure 6. GCN Layer

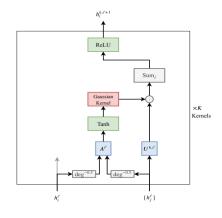
Figure 7. GraphSage Layer

Figure 8. GIN Layer

Various GNNs - Anisotropic

- Different Aggregation and Update functions are utilized for GNNs
- Learn weights of neighborhoods





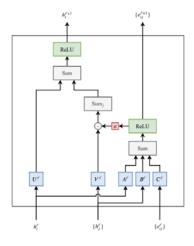


Figure 9. GAT Layer

Figure 10. MoNet Layer

Figure 11. GatedGCN Layer

Dwivedi, Vijay Prakash, et al. "Benchmarking graph neural networks." arXiv preprint arXiv:2003.00982 (2020).

Summary of Part2

Summary

• Graph

- A collection of interactions
- Contains relationships between drugs, genes, and diseases
- Heterogenous data types provide rich information but also cause technical challenges

Technologies

- Random Walk-Based Node Embedding
- Network Propagation
- Network Centralities / Clustering
- VAE / Collective VAE
- Matrix Factorization
- Graph Neural Network

73

PART 3

Graph Learning for Drug Target Identification

Contents

- Current researches in DTI prediction
- Future directions in DTI prediction
 - Heterogenous drug, gene, disease information
 - Downstream effect of drugs
- Technologies for DTI
 - deepDTnet (Chemical Science, 2020)
 - Drug embedding with target information (Briefings in Bioinformatics, accepted)

75

Current researches in DTI prediction

Computational and Structural Biotechnology Journal 19 (2021) 1541-1556

journal homepage: www.elsevier.com/locate/csbj

A review on compound-protein interaction prediction methods: Data, format, representation and model

Sangsoo Lim ^{a,1}, Yijingxiu Lu ^b, Chang Yun Cho ^d, Inyoung Sung ^d, Jungwoo Kim ^b, Youngkuk Kim ^b, Sungjoon Park ^b, Sun Kim ^{a,b,c,d,*}

- ^a Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea
- ^b Department of Computer Science and Engineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
- ^c Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
- ^d Interdisciplinary Program in Bioinformatics, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea

77

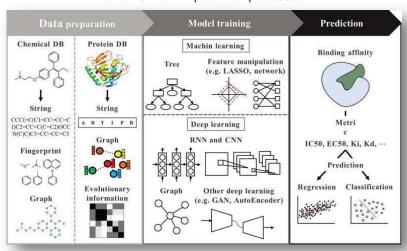
Computational and Structural Biotechnology Journal, 2021 (cited 25 times)

Review on DTI research

Background:

- Al approaches such as kernel-based, tree-based classifications, and neural network variations are recently applied to predicting affinity or interactions between small molecular drugs and protein targets.
- DTI researches could be separated into three major parts: data preparation, model training, and prediction.

Overview of DTI prediction processes



78

Review on DTI research

Data preparation:

Compounds:

- Chemical compounds can be described naturally in a human-readable format such as strings, graphs, or images.
- Chemical fingerprints that represents the existence of constitutive substructures/scaffolds or common functional groups are also widely used.

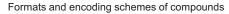
Proteins:

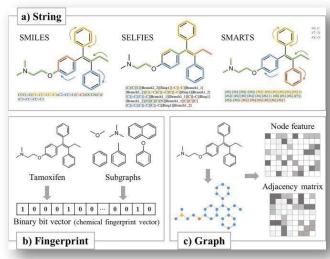
- Protein are represented as sequence of amino acids in most recent Al-based DTI researches.
- To utilize protein 3D structures, it is common to convert it as chemically attributed spatial graphs.
- Compared to the number of known amino acid sequences, number of known protein structures are much smaller.

79

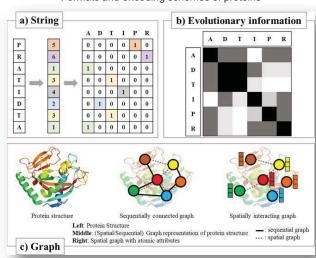
Review on DTI research

· Data preparation:





Formats and encoding schemes of proteins



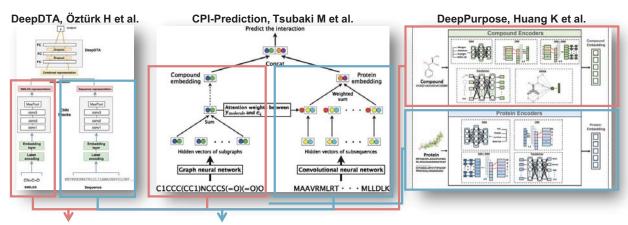
Review on DTI research

- Model training:
- Machine learning-based methods:
 - · Decision tree, random forest
 - Support vector machine
 - · Heterogeneous network
- Deep learning-based methods:
 - Recurrent neural network (RNN), Natural language processing (NLP)
 - Convolutional neural network (CNN)
 - Graph neural network (GNN)
 - Variational autoencoder (VAE) or generative adversarial network (GAN)

81

Typical model architectures for DTI

- Train compounds and proteins separately with two independent deep learning modules.
- Combine latent vectors of compounds and proteins for interaction prediction.



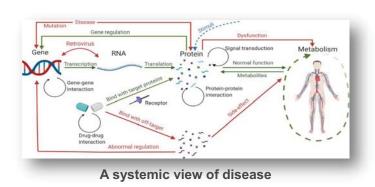
Compound training module

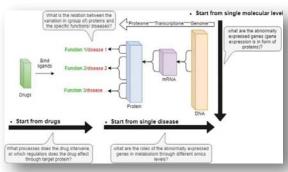
Protein training module

Drug – Target interaction needs to consider downstream effects, gene expressions!

Drug-target interactions and gene expression

- Drug molecules intervene in the regulatory process by binding with specific target ligands.
- Traditional treatment design based on physical parameters and external modalities or simple drug-target interactions are not sufficient for meeting clinical drug safety criteria or specifying variability among individuals.
- Modeling of the integrated clinical data and multi-layer molecular interactions makes the drug responses predictable.





Analysis of disease and drug effect

- deepDTnet (Chemical Science, 2020)
- Drug embedding with target information (Briefings in Bioinformatics, accepted)

85

Chemical Science, 2020

Target identification among known drugs by deep learning from heterogenous networks

Xiangxiang Zeng,‡^a Siyi Zhu,‡^b Weiqiang Lu,‡^c Zehui Liu,‡^d Jin Huang, log Yadi Zhou,^e Jiansong Fang,^e Yin Huang, Huimin Guo,^f Lang Li,^g Bruce D. Trapp,^h Ruth Nussinov, log ii Charis Eng,^{eklmn} Joseph Loscalzo and Feixiong Cheng log *ekl*

Motivation

- Drug target identification is a crucial process for drug discovery and effective treatment of human diseases
- Unintended therapeutic effects or multiple drug-target interactions leading to off-target toxicities and suboptimal effectiveness
- Experimental determination of drug-target interactions is costly and time-consuming
- Challenge
 - the features learned from the unsupervised learning procedure did not capture nonlinearity
 - randomly selected drug-target pairs as negative samples often cause potential false positive rate
- Approach: a network-based deep learning for in silico identification of molecular targets for known drugs
 - Embeds 15 types of chemical, genomic, phenotypic, and cellular networks
 - Generate biologically and pharmacologically relevant features through learning lowdimensional but informative vectors for both drugs and targets
 - To address the lack of negative samples, they utilized Positive-Unlabeled (PU) setting

87

DeepDTnet

 DeepDTnet is a deep learning methodology for new target identification and drug repurposing in a heterogeneous drug—gene—disease network embedding 15 types of chemical, genomic, phenotypic, and cellular network profiles.

Overview of deepDTnet Topotecan (TPT) TPT & ROR-yt Clinical Phenotypic Cellular Genomic Chemical Vehicle TPT 10 mg/kg Heterogeneous network integration (deepDTnet) Deep learning (deepDTnet) Target identification & Drug repurposing

Model overview

Input:

• 15 types of chemical, genomic, phenotypic, and cellular networks for 732 drugs and 1,178 targets.

Output:

The likelihood of the pairwise interaction score between drugs and targets.

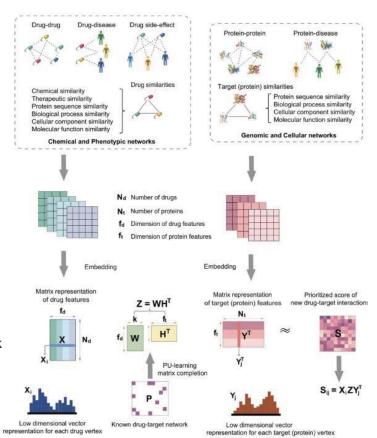
Methodology:

- DeepDTnet learns low-dimensional vector representation of the features for each node in the heterogeneous network.
- After learning the feature matrix for drugs and targets, deepDTnet applies PU-matrix completion to find the best projection from the drug space onto target (protein) space.
- Finally, deepDTnet infers new targets for a drug ranked by geometric proximity to the projected feature vector of the drug in the projected space.

89

Model overview

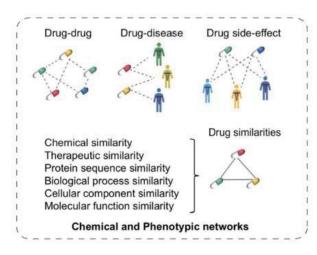
Learn the low-dimensional vectors for drugs, diseases

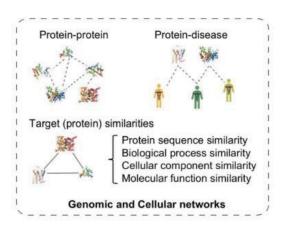


PU-matrix completion algorithm for the lack of publicly available negative samples

Heterogenous networks

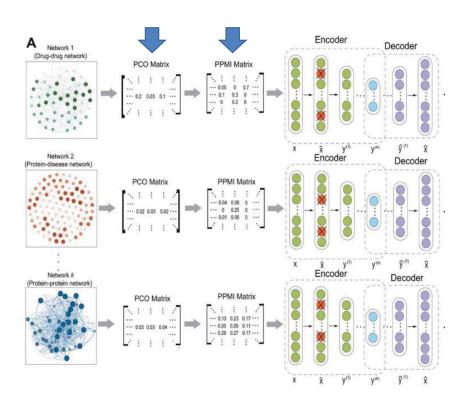
- Various databases are collected and utilized
 - Ex) drug-target network: DrugBank, Therapeutic Target Database, PharmGKB
 - Ex) disease-gene network: OMIM, CTD, HuGE navigator





91

Step1: low-dimensional representaions



Probabilistic Co-Occurrence matrix & Positive Pointwise Mutual Information

- Network propagation learns both local and global topological information
- After k step, a probabilistic co-occurrence matrix is obtained for each network

$$p_k = \omega \cdot p_{k-1}A + (1 - \omega)p_0$$

 A positive pointwise mutual information (PPMI) matrix is calculated to obtain drug representaions

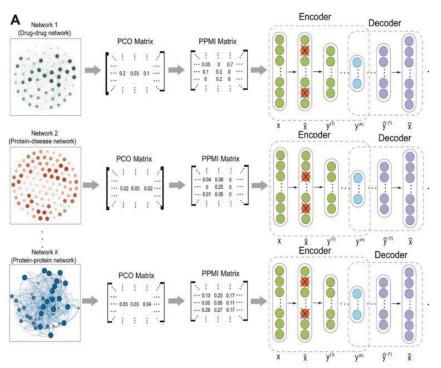
$$PPMI = \max \left(\log \frac{M(i,j) * \sum_{i}^{N_r} \sum_{j}^{N_c} M(i,j)}{\sum_{i}^{N_r} M(i,j) * \sum_{j}^{N_c} M(i,j)}, 0 \right)$$

M: the original co-occurrence matrix,

 N_r : the number of rows N_c : the number of columns.

93

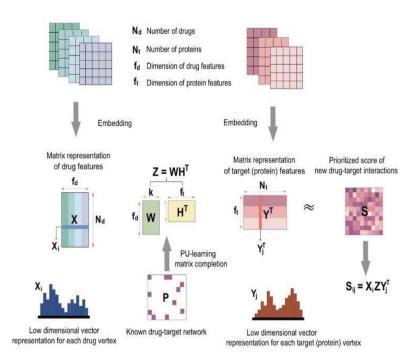
Step1: low-dimensional representaions



Stacked denoising autoencoder is utilized for learning lowdimensional vectors

94

Step2: PU-based matrix completion



Inductive matrix completion

$$\min_{W,H} \sum_{(i,j) \in \mathcal{Q}} \ell\left(P_{ij}, \ x_i^T W H^T y_j\right) + \frac{\lambda}{2} \left(\left\|W\right\|_F^2 + \left\|H\right\|_F^2\right)$$

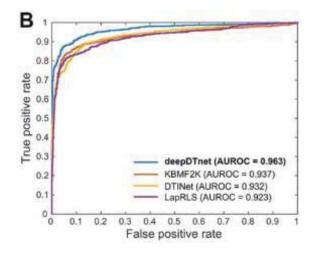
PU-matrix completion

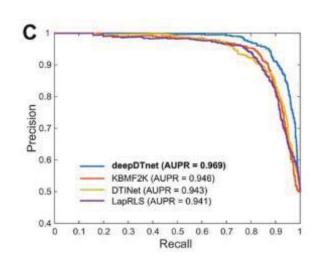
$$\begin{split} \min_{W,H} & \sum_{(i,j) \in \Omega^+} \left(P_{ij} - x_i W H^T y_j^T \right)^2 + \alpha \sum_{(i,j) \in \Omega^-} \left(P_{ij} - x_i W H^T y_j^T \right)^2 \\ & + \lambda \left(\left\| W \right\|_{\text{F}}^2 + \left\| H \right\|_{\text{F}}^2 \right) \end{split}$$

 α : the penalty of the unobserved entries toward zero

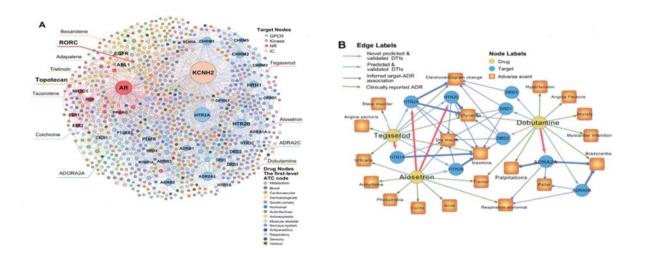
95

Results: Perfomance of DTI prediction





Results: The uncovered drug-target network



97

Summary

- Deep learning model for learning heterogeneous drug-gene-disease newtork
- Key points
 - Learn multiple chemical & genomic information as low-dimensional embeddings
 - Apply PU-matrix completion to address sparsity of postivie samples and lack of negative samples in DTI

Briefings in Bioinformatics, 2023, accepted

Improved Drug Response Prediction by Drug Target Data Integration via Network-based Profiling

Minwoo Pak[®], ^{1,†} Sangseon Lee[®], ^{2,†} Inyoung Sung[®] and Sun Kim[®], ^{1,3,4,*}

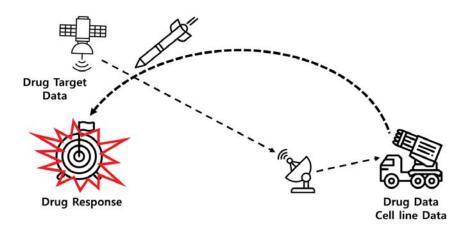
99

Motivation

- Drug response prediction is important for precision medicine in that it can help predict how a patient would react to a drug before the actual administration
- Intuitively, use of drug target interaction (DTI) information can be useful for drug response prediction
- Challenge: use of DTI is difficult because existing drug response database such as CCLE and GDSC do not have information about transcriptome after drug treatment
- Approach: framework, NetGP that can improve existing deep learningbased drug response prediction models by effectively utilizing drug target information.
 - a module to compute gene perturbation scores by the network propagation technique on a Protein-Protein Interaction (PPI) network
 - NetGP with the network propagation technique produces perturbation effects by the pharmacologic modulation of target gene
 - a model-agnostic way so that any existing DTI tool can be incorporated.

Motivation

- <u>Drug response</u> prediction is highly significant in precision medicine in that it can help predict how a patient would react to a drug before the actual administration.
- <u>Drug target information</u> represents the mechanism of the drug affecting a cell thereby bridging the relationship between the two.



101

*GDSC: Genomics of Drug Sensitivity in Cancer *CADD: Chemoinformatics Tools and User Services

Model overview

Input

- · Drug response information from GDSC
- Drug SMILES data from CADD
- Protein-protein interaction network from STRING
- Drug target information from GDSC and DrugBank

Model

- TargetNet: drug target profile extraction algorithm
- Placeholder drug response prediction method

Output

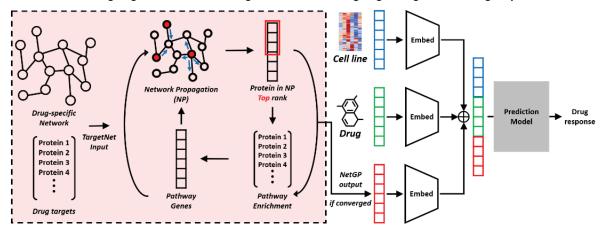
• Drug response: IC50 or area under dose-response curve value

Overview of NetGP

 Integration with existing tools in terms of embedding vector (in model-agnostic way)

NetGP: Drug Target Profile Extraction Algorithm

Drug Target integration for Drug Response Prediction



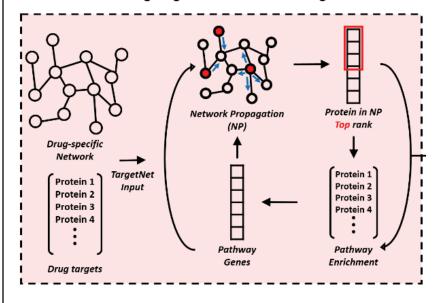
 Simulate a perturbation effect of a given drug using drug target information and PPI network → network propagation

103

NetGP: Model detail

• Phase 1: network-based drug target profile extraction phase

NetGP: Drug Target Profile Extraction Algorithm

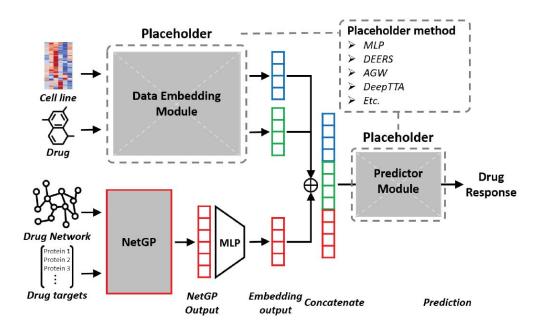


- Network propagation identifies affected candidate genes from drug target genes
- Iteratively perform network propagation with enriched biological mechanisms
 - Network propagation prunes to biased seeds and network topology
 - Iteration will remove noises

104

NetGP: Model detail

- Phase 2: drug target profile integration
 - Embed cell line, drug and drug target profile from NetGP
 - Any deep learning model can be replaced with Placeholder



Results: Performance of Drug Response Prediction

- Drug response prediction performance gain by integrating TargetNet
 - 1st row: Placeholder method
 - 2nd row: Placeholder method + NetGP
 - · Traditional evaluation scheme

Unseen drugs during training

Mix Split	RMSE	; †	PCC	<u> </u>	SCC 1	1
AGW w/ NetGP	$1.0345 \pm 0.011 \\ 1.0328 {\pm 0.006}$	+0.19%	0.9237 ± 0.002 0.9238 ± 0.001	+0.01%	0.8987 ± 0.002 0.8988 ± 0.002	+0.01%
DEERS w/ NetGP	$1.2124 \pm 0.020 \\ 1.2085 {\pm 0.015}$	+0.25%	0.8923 ± 0.004 0.8937 ± 0.003	+0.22%	0.8567 ± 0.004 0.8586 ± 0.004	+0.23%
DeepTTA w/ NetGP	0.9988 ± 0.009 0.9979 ± 0.008	+0.10%	0.9284 ± 0.001 0.9284 ± 0.001	-	0.9045 ± 0.002 0.9044 ± 0.002	-0.11%
MLP w/ NetGP	$1.0734 \pm 0.012 \\ 1.0201 {\pm 0.012}$	+5.20%	0.9169 ± 0.002 0.9251 ± 0.002	+0.87%	0.8914 ± 0.003 0.9001 ± 0.003	+1.01%
Precily w/ NetGP	1.2903 ± 0.016 1.0800 ± 0.032	+19.44%	0.8760 ± 0.003 0.9149 ± 0.004	+4.45%	0.8357 ± 0.005 0.8857 ± 0.005	+5.98%
PathDNN w/ NetGP	1.4049 ± 0.011 1.3402 ± 0.048	+4.85%	0.8689 ± 0.002 0.8827 ± 0.009	+1.61%	0.8219 ± 0.002 0.8454 ± 0.009	+2.8%

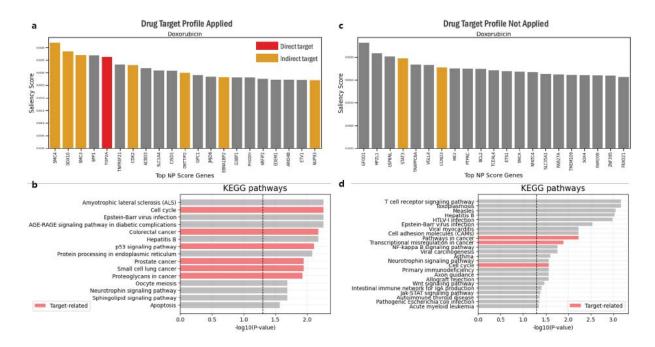
/3 N	7 F.	0	
(b)) Mix	Sp	111
(,		

Drug Split	RMSE	+	PCC	†	SCC	†
AGW w/ NetGP	2.6053 ± 0.297 2.4837 ± 0.260	+4.87%	0.3683 ± 0.149 0.4374 ± 0.135	+18.75%	0.3373 ± 0.146 0.4079 ± 0.135	+21.07%
DEERS w/ NetGP	2.6225 ± 0.375 2.5538 ± 0.315	+2.66%	$\begin{matrix} 0.2939 \pm 0.132 \\ \textbf{0.3944} {\pm} \textbf{0.105} \end{matrix}$	+34.01%	$\begin{array}{c} 0.2743 \pm 0.108 \\ \textbf{0.3647} {\pm 0.084} \end{array}$	+33.21%
DeepTTA w/ NetGP	2.5096 ± 0.358 2.4086 ± 0.285	+4.19%	${0.4241 \pm 0.155}\atop \mathbf{0.4675 \pm 0.083}$	+10.38%	$\begin{array}{c} 0.3771 \pm 0.117 \\ \textbf{0.4399} {\pm} 0.075 \end{array}$	+16.71%
MLP w/ NetGP	2.5871 ± 0.292 2.4621 ± 0.281	+5.08%	0.3799 ± 0.129 0.4475 ± 0.122	+17.89%	$\begin{array}{c} 0.3433 \pm 0.120 \\ \textbf{0.4088} {\pm} \textbf{0.118} \end{array}$	+18.95%
Precily w/ NetGP	2.7150 ± 0.240 2.4321 ± 0.265	+11.64%	$\begin{array}{c} 0.4673 \pm 0.125 \\ \textbf{0.5230} {\pm} \textbf{0.143} \end{array}$	+11.99%	$\begin{array}{c} 0.4192 \pm 0.134 \\ \textbf{0.4511} {\pm} \textbf{0.118} \end{array}$	+7.64%
PathDNN w/ NetGP	2.9481 ± 0.384 $2.9456 {\pm 0.289}$	+0.07%	0.1772 ± 0.230 0.1975 ± 0.158	+11.86%	0.1823 ± 0.224 0.1536 ± 0.160	-15.38%

(a) Drug Split

Results: Gene importance analysis

· Drug example: Doxorubicin



107

Results: Effect of Drug Target Information

 Use of drug target profile boosts prediction performance, especially for drugs with explicit target proteins known

Table 3. Explicit Target Drugs vs. Non-explicit Target Drugs. * indicates explicit target pathway.

Category	Default	Framework Applied	Difference
Default	0.3154	0.4532	+43.69%
↑ DNA Replication	0.3794	0.3835	+1.08%
Mitosis	0.7467	0.7542	+1.00%
*Other, Kinase	0.3930	0.6959	+77.07%

Summary

- Proposed a framework for improved drug response prediction by effectively exploiting drug target information
- Key points
 - Presents a drug target profile extraction algorithm NetGP
 - Drug target profile from NetGP can be integrated to any exiting drug response prediction deep learning model

100

Summary of Part3

Summary

Graph Learning for DTI

- Current DTI studies focus only drugs and targets of interest.
- Learning heterogenous relationships between drugs, genes, and diseases is important.
- Downstream effects of drugs will improve drug-target idenfication and drug response prediction.

111

PART 4 Drug Repurposing

Contents

- Introduction
- Examples
 - Baricitinih
 - DrugCell
 - Deep learning approach to Antibiotic discovery
 - Literature-based approaches

Networks and Databases

- Networks
 - PPI STRING, BioGRID
 - Biological pathways KEGG, Reactome
 - Disease networks Diseasome, HDN, DGN
 - Comprehensive heterogeneous networks Hetio, MSI
- Databases
 - Drug Repurposing Hub
 - RepoDB
 - CTD
 - PharmacoDB

Technologies

- Network analysis
 - Network centralities
 - Network clustering K-means, Hierarchical
 - Network propagation PropaNet, MLDEG
- Network representation learning
 - word2vec DeepWalk, node2vec, DREAMwalk
 - Graph Neural Network
- Network-based drug repurposing: cases
 - SNF-cVAE (Knowledge-Based Systems, 2021)
 - CBPred (Cells, 2019)
 - DeepDR (Bioinformatics, 2019)
 - BiFusion (ISMB 2020)
 - DreamWalk (in review)

Drug repositioning (or repurposing)

- Repurposing of old drugs to treat diseases is increasingly becoming an attractive proposition.
- Advantages of repurposing drugs
 - · Risk of failure is lower
 - · Time frame can be reduced
 - · Less investment is needed
 - → Less risky and more rapid return in investment!

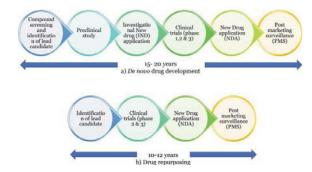
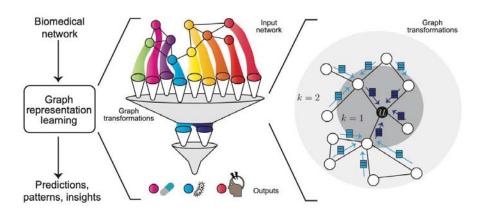


Table 1 Selected successful drug repurposing examples and the repurposing approach employed					
Drug name	Original Indication	New indication	Date of approval	Repurposing approach used	Comments on outcome of repurposi
Zidovudine	Cancer	HIV/AIDS	1987	In vitro screening of compound libraries	Zidovudine was the first anti-HIV drug t approved by the FDA
Minoxidil	Hypertension	Hair loss	1988	Retrospective clinical analysis (identification of hair growth as an adverse effect)	Global sales for minoxidil were US\$660 million in 2016 (Questale minos sales report 2017; see Related links)
Sildenafil	Angina	Erectile dysfunction	1998	Retrospective clinical analysis	Marketed as Viagra, sildenafil became t leading product in the erectile dysfunc- drug market, with global sales in 2012 of \$2.05 billion*
Thalidomide	Morning sickness	Erythema nodosum leprosum and multiple myeloma	1998 and 2006	Off-label usage and pharmacological analysis	Thatidomide derivatives have achieved substantial clinical and commercial suc in multiple myeloma
Celecoxib	Pain and inflammation	Familial adenomatous polyps	2000	Pharmacological analysis	The total revenue from Celebrex (Pfize the end of 2014 was \$2.69 billion (Pfize financial report; see Related links)
Atomoxetine	Parkinson disease	ADHD	2002	Pharmacological analysis	Strattera (Eli Lilly) recorded global sales \$855 million in 2016
Duloxetine	Depression	SUI	2004	Pharmacological analysis	Approved by the EMA for SUL The application was withdrawn in the US. Duloxetine is approved for the treatme depression and chronic pain in the US.
Riturimab	Various cancers	Rheumatoid arthritis	2006	Retrospective clinical analysis (remission of coexisting rheumatoid arthritis in patients with non-Hodgkin lymphoma treated with risusimab**)	Global sales of rituximab topped \$7 bill 2015 (RES ¹⁰⁰)
Raloxifene	Osteoporosis	Breast cancer	2007	Retrospective clinical analysis	Approved by the FDA for invasive brea- cancer. Worldwide sales of \$237 million 2015 (see Related links)
Fingolimod	Transplant rejection	MS	2010	Pharmacological and structural analysis ¹⁴⁶	First oral disease-modifying therapy to approved for MS. Global sales for fingo (Cilenya) reached \$3.1 billion in 2017 (s Related links)
Dapoxetine	Analgesia and depression	Premature ejaculation	2012	Pharmacological analysis	Approved in the UK and a number of European countries; still awaiting appr in the US. Peak sales are projected to re \$750 million
Topiramate	Epilepsy	Obesity	2012	Pharmacological analysis	Qsymia (Vivus) contains topiramate in combination with phentermine
Ketoconazole	Fungal infections	Cushing syndrome	2014	Pharmacological analysis	Approved by the EMA for Cushing sync in adults and adolescents above the ag 12 years (see <u>Related links</u>)
Aspirin	Analgesia	Colorectal cancer	2015	Retrospective clinical and pharmacological analysis	US Preventive Services Task Force releader frecommendations in September regarding the use of aspirin to help precardiovascular disease and colorectal cancer ¹⁰

Pushpakom, S., Iorio, F., Eyers, P. et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov 18, 41–58 (2019)



Representation learning for networks in biology and medicine.

Li, Michelle M., Kexin Huang, and Marinka Zitnik. "Graph Representation Learning in Biomedicine." arXiv preprint arXiv:2104.04883 (2021).

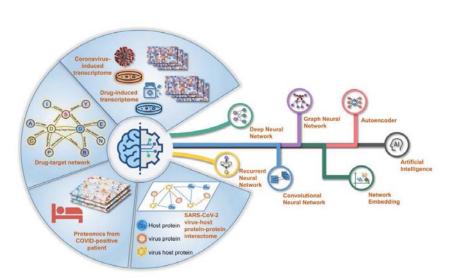
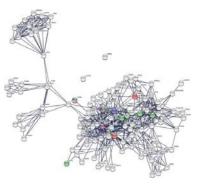


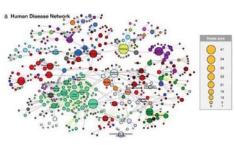
FIGURE 5 A diagram illustrating deep learning-based drug repurposing infrastructure for emerging development of host-targeting therapies to fight COVID-19 and future pandemic. We posited that approved drugs that specific human proteins/targets may offer potential host-targeting therapies for COVID-19 as COVID-19 may share biology with human cells and tissues from the SARS-CoV-2 virus-host protein-protein interactome perspective.

Pan, Xiaoqin, et al. "Deep learning for drug repurposing: Methods, databases, and applications." Wiley Interdisciplinary Reviews: Computational Molecular Science (2022)

Disease and Biological Networks

- Networks is a method of representing systemic <u>biological interactions</u> between various biological objects.
- These networks or graphs are used to capture relationships between biological entities.





Pound Services Servic

Protein-Protein Interaction Network of Heroin Use Disorder

Chen, S.J., Liao, D.L., Chen, C.H. et al. Construction and Analysis of Protein-Protein Interaction Network of Heroin Use Disorder. Sci Rep 9, 4980 (2019)

Human Disease Network

Goh, Kwang-II, et al. "The human disease network." Proceedings of the National Academy of Sciences 104.21 (2007): 8685-8690.

Multi-scale Interactome Network

Ruiz, C., Zitnik, M. & Leskovec, J. Identification of disease treatment mechanisms through the multiscale interactome. Nat Commun 12, 1796 (2021)

Baricitinib

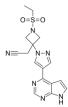
THE LANCET
- Respiratory Medicine

Efficacy and safety of baricitinib for the treatment of hospitalised adults with COVID-19 (COV-BARRIER): a randomised, double-blind, parallel-group, placebocontrolled phase 3 trial

Vincent C. Marconi, Althinologier V. Romanan, Stephanie de Bono, Cynthia E. Kortman, Venlatach fishana, Ran Liao, Maria Lucia B. Pinzud Jason D. Goldman, Joge Aktorne Akonachi, Ras de Cassia Pellippin, Vicente-Errada, Novamis-Son, Andebid Cardosa, Siyistro Chakkadr. Brenda Crowe, Paulo Reis, Xin Zhang, David H. Adarm, E. Wesley Ely, on behalf of the COV-BARBER Study Group*

Interpretation

COVID-19



Baricitinib

- Originally used for rheumatoid arthritis (RA).
- Inhibitor of Janus Kinase (JAK).

Although there was no significant reduction in the frequency of disease progression overall, treatment with baricitinib in addition to standard of care (including dexamethasone) had a similar safety profile to that of standard of care alone, and was associated with reduced mortality in hospitalised adults with

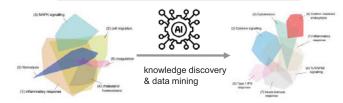
	Berlind you	Destroyer		mand one	Anna
NEED IN soins at head	in .		200		
4	athoni-	4001444		01410-00-1475	940
1	200 ball chris	454723865	-	001046436	015
	\$23/6 (EPs)	BOOK (See		AG (610-440)	3.665
Systems on Established	one of hundred				
Nes	30/64/294	faturoes.		110.040100	HIST
to.	temmers.	SS We CON		0.05 (819) 477)	100
According to all beauty					
The .	1214F-019	100147-2009		198 (0.05 (.0))	140
34	SERVED APPEA	SWING COME		952 (196-125)	1004
Compagnical imples					
Barige	275.041	475.84		4 11 19 40 1 40	118
19a	MONEY CONA	1410F-2519		944 (83) 136	816
Best street ld	40/309 (PV)	20000044		107(040-056)	0.000
See			2.531		
Mile	25416-754	14475390		105-015-036	1004
Pyrise	DECTR OFF	adult erec	-	A-61-(1-24-a-61)	945
Disease Assertance of Your	diss (Mayo)				
et.	7907.6%	26/22/(341)		VHPGeNI	100
a.	10/45 (94)	NAME AND ADDRESS OF		2012946-009	1200
Age of Sandins (print)					
-	1050FQN(-1	Accordates		T45 (0.64 T3)	hend
46	45/29 (chi)	390403400		0.60 (0.46 6.00)	Betty
Papalation 2"	591.511	30,349,0054	-	10100040	1100
Freedigestation ()	64750 Bell	power Principles		100 march	A-residence of

Expert-Augmented Computational Drug Repurposing Identified Baricitinib as a Treatment for COVID-19

Daniel P. Smith¹, Olly Oechsle¹, Michael J. Rawling¹, Ed Savory¹, Alix M.B. Lacoste^{2†} and Peter John Richardson¹*

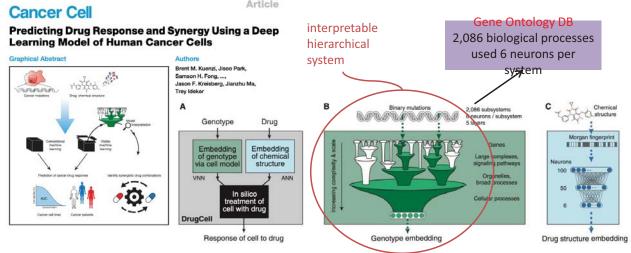
¹BenevolentAl, London, United Kingdom, ²BenevolentAl, Brooklyn, NY, United States

The workflow comprised rapid augmentation of knowledge graph information from recent literature using machine learning (ML) based extraction, with human-guided iterative queries of the graph. Using this workflow, we identified the rheumatoid arthritis drug baricitinib as both an antiviral and anti-inflammatory therapy. The effectiveness of baricitinib was substantiated by the recent publication of the data from the ACIT-2 randomised Phase 3 trial, followed by emergency approval for use by the FDA, and a report from the CoV-BARRIER trial confirming significant reductions in mortality with baricitinib compared to standard of care

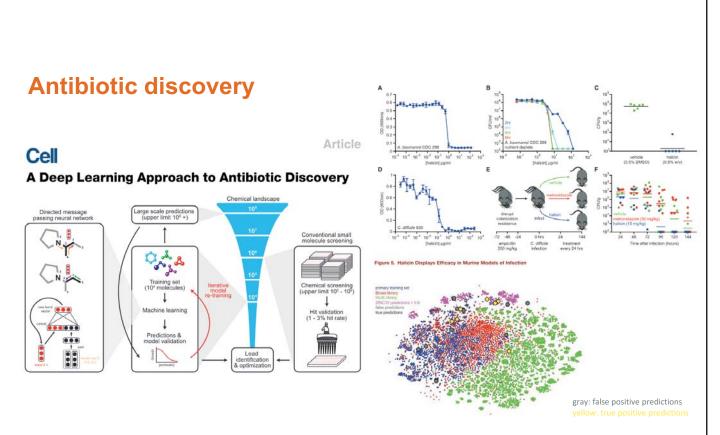


DrugCell

- DrugCell is an <u>interpretable</u> deep learning model that <u>simulates the response of human cancer</u> cells to therapy.
- DrugCell predictions might generalize to patient tumors and can be used to design <u>synergistic</u> <u>drug combinations</u> that significantly improve treatment outcomes.



Kuenzi, Brent M., et al. "Predicting drug response and synergy using a deep learning model of human cancer cells." Cancer cell 38.5 (2020): 672-684.



Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery." Cell 180.4 (2020): 688-702.

Dsicovery of structurally divergent antibiotics

- Here, we demonstrate how the combination of in silico predictions and empirical investigations can lead to the discovery of new antibiotics.
- First, we trained a deep neural network model to predict *growth* inhibition of Escherichia coli using a collection of 2,335 molecules.
- Second, we applied the resulting model to several *discrete* chemical libraries, comprising >107 million molecules, to identify potential lead compounds with activity against *E. coli*.
- After ranking the compounds according to the model's predicted score, we lastly selected a list of candidates based on a prespecified prediction score threshold, chemical structure, and availability.
- Through this approach, <u>from the Drug Repurposing Hub</u>, we identified the c-Jun N-terminal kinase inhibitor SU3327 (De et al.,

Literature-based approaches

Bioinformatics, 36(4), 2020, 1234–1240 doi: 10.1093/bioinformatics/btr682 vance Access Publication Date: 10 September 2019 Original Paper

Data and text mining

BioBERT: a pre-trained biomedical language representation model for biomedical text mining

Jinhyuk Lee $^{\circ}$ 1, , Wonjin Yoon $^{\circ}$ 1, , Sungdong Kim $^{\circ}$ 2, Donghyeon Kim $^{\circ}$ 1, Sunkyu Kim $^{\circ}$ 1, Chan Ho So $^{\circ}$ 3 and Jaewoo Kang $^{\circ}$ 1.3.*

¹Department of Computer Science and Engineering, Korea University, Seoul 02841, Korea, ²Clova Al Research, Naver Corp, Seong-Nam 13561, Korea and ³Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul 02841, Korea

Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processing (NLP), extracting valuable information from biomedical literature has gained popularity among researchers, and deep learning has boosted the development of effective biomedical text mining models. However, directly applying the advancements in NLP to biomedical text mining often yields unsatisfactory results due to a word distribution shift from general domain corpora to biomedical corpora. In this article, we investigate how the recently introduced pre-trained language model BERT can be adapted for biomedical corpora. We introduce BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining), which is a domain-specific language representation model pre-trained on large-scale biomedical corpora. With almost the same architecture across tasks, BioBERT largely outperforms BERT and previous state-of-the-art models in a variety of biomedical text mining tasks when pre-trained on biomedical corpora. While BERT obtains performance comparable to that of previous state-of-the-art models, BioBERT significantly outperforms them on the following three representative biomedical text mining tasks: biomedical named entity recognition (0.62% F1 score improvement), biomedical relation extraction (2.80% F1 score improvement) and biomedical question answering (12.24% MRR improvement). Our analysis results show that pre-training BERT on biomedical corpora helps it to understand complex biomedical texts. We make the pre-trained weights of BioBERT freely available at this https URL, and the source code for fine-tuning BioBERT available at this https URL.

Literature-based approaches

Bioinformatics, 36(4), 2020, 1234-1240
doi: 10.1050/bioinformatics/biof682
Advance Access Publication Date: 10 September 2019
Original Paper

ONSO(81)

Data and text mining

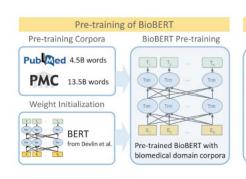
BioBERT: a pre-trained biomedical language representation model for biomedical text mining

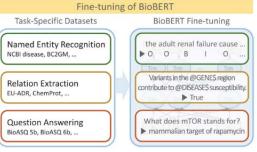
Jinhyuk Lee $^{\circ}$ 1.7, Wonjin Yoon $^{\circ}$ 1.7, Sungdong Kim $^{\circ}$ 2, Donghyeon Kim $^{\circ}$ 1, Sunkyu Kim $^{\circ}$ 1, Chan Ho So $^{\circ}$ 3 and Jaewoo Kang $^{\circ}$ 1.3.*

¹Department of Computer Science and Engineering, Korea University, Secul 92841, Korea, ²Clove All Research, Naver Corp., Seong-Nam 19881, Korea and ³Interdistriptionary Graduate Program in Bisinformatics, Korea University, Secul 93841, Korea

Table 1. List of text corpora used for BioBERT

Corpus	Number of words	Domain
English Wikipedia	2.5B	General
BooksCorpus	0.8B	General
PubMed Abstracts	4.5B	Biomedical
PMC Full-text articles	13.5B	Biomedical





Lee, Jinhyuk, et al. "BioBERT: a pre-trained biomedical language representation model for biomedical text mining." Bioinformatics 36.4 (2020): 1234-1240.

Literature-based approaches

PubMedBERT

Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing

YU GU', ROBERT TINN', HAO CHENG', MICHAEL LUCAS, NAOTO USUYAMA, XIAODONG LIU, TRISTAN NAUMANN, JIANFENG GAO, and HOIFUNG POON, Microsoft Research

BioMegatron

BioMegatron: Larger Biomedical Domain Language Model

Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina, Raul Puri, Mostofa Patwary, Mohammad Shoeybi, Raghav Mani NVIDIA / Santa Clara, California, USA hshin@nvidia.com

Model	PubMed Corpus	#Words
BioBERT	abstracts	4.5 billion
PubMedBERT	abstracts + full-text	16.8 billion
BioMegatron	abstracts + full-text-CC	6.1 billion

Networks

Commonly used biological networks and disease networks

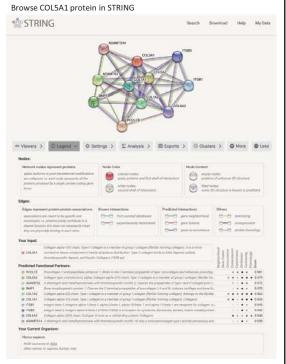
Protein-protein interaction network (PPI) - STRING, BioGRID Biological pathways network – KEGG, Reactome Disease networks - Diseasome, HDN, DGN Comprehensive heterogeneous network - HetioNet, MSI

PPI Network - STRING STRING

STRING

- Search Tool for the Retrieval of Interacting Genes/Proteins
- Integrates all publicly available sources of protein-protein interaction information.
 - Automated text mining
 - Interaction experiments
 - Computational interaction predictions from co-expression
- Statistics of latest version of STRING

Category	Count
Organisms	14,094
Proteins	67,592,464
Interactions	20,052,394,041



Szklarczyk, Damian et al. "The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets." Nucleic acids research vol. 49,D1 (2021)

PPI Network - BioGRID BioGRID 44

BioGRID

- Biological General Repository for Interaction Datasets
- Archives genetic and protein interaction data from various organisms.

Category	Count
Protein/Genetic inter actions	2,551,504
Chemical interactions	29,417
Post translational mo difications	1,128,339

HMGCR WI Interactors (IV) Interactions (IV) Ch ng 1 to 157 of 157 unique

1

Oughtred, Rose et al. "The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions." Protein science: a publication of the Protein Society vol. 30,1 (2021)

X123, Clor61, RP11-548B3.1

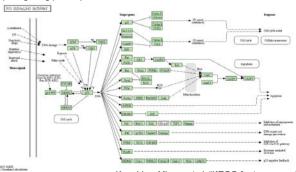
Browse HMGCR protein in BioGRID

CLUAPI

Biological Pathways Network - KEGG

KEGG

- Kyoto Encyclopedia of Genes and Genomes
- A curated collection of biological information compiled from published material.
- Includes information on genes, proteins, metabolic pathways, molecular interactions, and biochemical reactions associated with specific organisms.
- Provides a relationship for how these components are organized in a cellular structure or reaction pathway. p53 signaling pathway from KEGG



Statistics of KEGG

KEGG Database	as of 2022/11/15	
Systems informati	on	
KEGG PATHWAY	Pathway maps, reference (total)	560 (981,813)
KEGG BRITE	Functional hierarchies, reference (total)	189 (331,224)
KEGG MODULE	KEGG modules Reaction modules	470 46
Genomic informati	on	
KEGG ORTHOLOGY	Y KEGG Orthology (KO) groups	25,499
KEGG GENES	Genes in KEGG organisms Viral genes Viral mature peptides Addendum proteins	43,807,605 595,443 312 4,125
KEGG GENOME	KEGG organisms (817 eukaryotes, 7310 bacteria, 401 archaea) KEGG selected viruses (T4 category) KEGG viruses (Vtax category)	8,528 359 11,485
Chemical informat		
KEGG COMPOUND	Metabolites and other chemical substances	19,017
KEGG GLYCAN	Glycans	11,114
KEGG REACTION	Biochemical reactions Reaction class	11,858 3,192
KEGG ENZYME	Enzyme nomenclature	8,012
Health information		
KEGG NETWORK	Disease-related network elements Network variation maps	1,310 146
KEGG VARIANT	Human gene variants	802
KEGG DISEASE	Human diseases	2,603
KEGG DRUG	Drugs Drug groups	12,004 2,410
Drug labels		
KEGG MEDICUS	Japanese prescription drug labels from JAPIC Japanese OTC drug labels from JAPIC	14,138 10,638
KEGG MEDICUS	FDA prescription drug labels linked to DailyMed	34,227

Kanehisa, Minoru et al. "KEGG for taxonomy-based analysis of pathways and genomes." Nucleic acids research, gkac963. 27 Oct. 2022

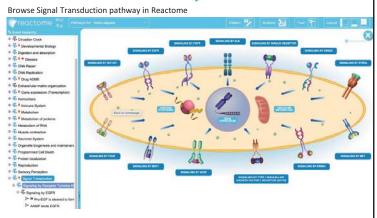
Biological Pathways Network - Reactome reactome

Reactome

- · Open source pathway database
- Curated human pathways encompassing metabolism, signaling, and other biological processes.
- Every pathway is <u>traceable</u> to primary literature.
- Cross-reference to many other bioinformatics databases.
- Provides data analysis and visualization tools.

Statistics of Reactome

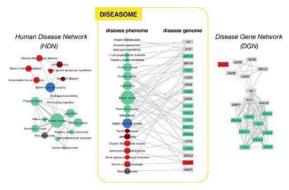
SPECIES	PROTEINS	COMPLEXES	REACTIONS	PATHWAYS
S. pombe	1690	1805	1486	819
S. cerevisiae	1913	1827	1566	812
D. rerio	8633	8452	7383	1676
X. tropicalis	7046	7321	6159	1580
G. gallus	7296	7931	6859	1706
S. scrofa	8407	8825	7548	1660
B. taurus	8841	9182	8048	1696
C. familiaris	8162	8725	7455	1657
R. norvegicus	8808	9505	8356	1702
M. musculus	9537	10620	9456	1715
*H. sapiens	11097	14084	14398	2601
D. melanogaster	4755	5402	4596	1477
C. elegans	4468	4403	3700	1304
D. discoideum	2681	2502	2313	982
P. falciparum	1051	1007	861	599





Gillespie, Marc et al. "The reactome pathway knowledgebase 2022." Nucleic acids research vol. 50,D1

Disease Networks - Diseasome, HDN and DGN



Diseasome

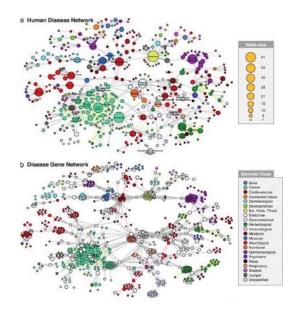
· A small subset of OMIM-based disease gene association.

HDN: Human Disease Network

- · Projection of the diseasome bipartite graph.
- · Two diseases are connected if there is a gene that is implicated in both.

DGN: Disease Gene Network

Two genes are connected if they are involved in the Goh, Kwang-II, et al. "The human disease network." Proceedings of the National Academy of Sciences 104.21 (2007): 8685same disease.

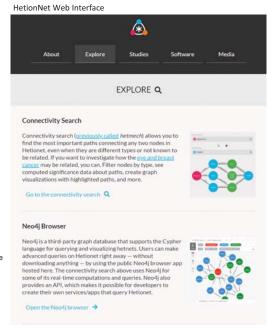


Comprehensive Heterogeneous Networks - HetioNet

HetioNet

- · An integrative network encoding knowledge from millions of biomedical studies.
- Data were integrated from 29 public resources to connect meta-nodes.
- Meta nodes (11 types): anatomy, biological process, cellular component, compound, disease, gene, molecular function, pathway,

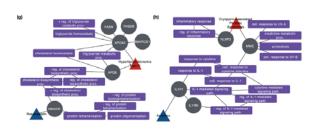
pharmacologic class, side effect, symptom Meta edges (24 types) Hypertension Sibutramine hendimetrazine

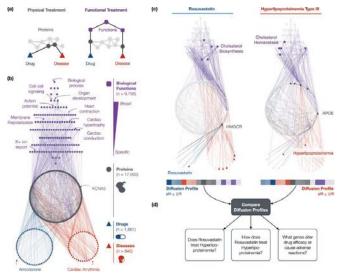


Himmelstein, Daniel Scott et al. "Systematic integration of biomedical knowledge prioritizes drugs for repurposing." eLife vol. 6 e26726. 22 Sep. 2017

Comprehensive Heterogeneous Networks - MSI

- Multiscale Interactome network
- An integrative network of disease, proteins, biological functions and drugs.
- · Data were retrieved from 19 public databases.
- Random walk-based method can be applied to capture the effects of drugs through a hierarchy of biological functions and protein-protein interactions.





Databases

Commonly used databases for Drug repositioning

Drug Repurposing Hub repoDB CTD PharmacoDB

Database Overview (graph view)

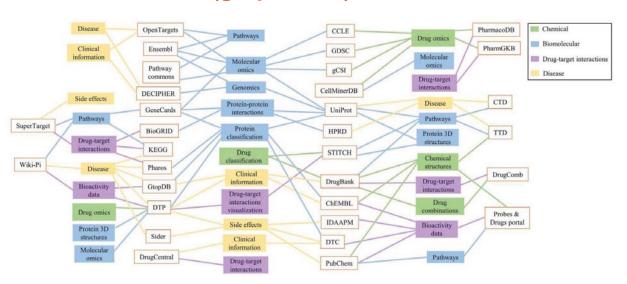


Figure 1. Drug repositioning databases categorized into more than one subcategory. Some subcategories are shown more than once in order to facilitate the interpretation of database relationships.

Tanoli, Ziaurrehman, et al. "Exploration of databases and methods supporting drug repurposing: a comprehensive survey." Briefings in bioinformatics 22.2 (2021): 1656-1678.

Database Overview (table view)

Database	Describe	URL	References	API
BindingDB	A public database of protein ligand binding affinities.	http://www.bindingdb.org/ bind	30	•
CCLE	Cancer Cell Line Encyclopedia (CCLE) is a large cancer cell line collection that broadly captures the genomic diversity of human cancers and provides valuable insight into anti- cancer drug responses.	https://portals.broadinstitute. org/ccle	31	NA
CellMinerCDB	An interactive web application that simplifies the access and exploration of cancer cell line pharmacogenomic data across different sources.	https://discover.nci.nlh.gov/ cellminerodb/	32	NA
ChEMBL	A manually curated database of bioactive molecules with drug-like properties. It brings together chemical, bioactivity, and genomic data to aid the translation of genomic information into effective new drugs.	https://www.ebi.ac.uk/ chembil/	33	•
ChemDB	It provides chemical structures and molecular properties. ChemDB also predicts 3D structures of molecules.	http://cdb.ics.uci.edu/	34	NA
ChemicalChecker	It provides processed, harmonized, and integrated bioactivity data.	https://chemicalchecker.org/	35	•
CGI	Cancer Genome Interpreter (CGI) supports the identification of tumor alterations that drive the disease and flag those that may be therapeutically actionable.	https://www. cancergenomeinterpreter. org/	36	NA
CTD (Comparative Textcogenomics Database)	Comparative Toxicogenomics Database (CTD) provides manually curated information about chemical—gene or peotein interactions, chemical—disease, and gene—disease relationships.	http://ctdbase.org/	37	NA
DGIdb	Drug-target interactions mined from >30 trusted sources, including DrugBank, PharmGKB, Chembl, Drug Target Commons, and Therapeutic Target Database.	http://www.dgidb.org/	38	•
DisGeNET	It is a discovery platform containing publicly available collections of genes and variants associated with human diseases.	http://www.disgenet.org/	39	•
Drugflank	It combines drug data (i.e., chemical, pharmacological and pharmaceutical) information with drug target information (i.e., sequence, structure, and pathway).	http://www.drugbank.ca	28	•
DrugCentral	It provides information on active chemical entities and drug modes of action.	http://drugcentral.org/	40	•
DTC	Drug Target Commons (DTC) manually curates bioactivity data along with protein classification into superfamilies, clinical phase, and adverse effects as well as disease indications.	http://drugtargetcommons. firms.fi/	41	•
DTP	Drug Target Profiler (DTP) contains drug target bioactivity data and implements network visualizations. DTP also contains cell-based response profiles of the drugs and their clinical phase information.	http://drugtargetprofiler. firmm.fi/	42	NA
GeneCards	Automatically integrates gene-centric data from 150 web sources, including genemic, transcriptomic, proteomic, genetic, clinical, and functional information.	https://www.genecards.org/	43	NA
GLIDA	It contains drug-target interactions for G-protein-coupled receptors (GPCRs).	http://pharminfo.pharm. kyoto-u.ac.jp/services/ glida/	44	NA
GtopDB	It contains quantitative bioactivity data for approved drugs and investigational compounds.	http://www. guidetopharmacology.org/	45	•

Database	Describe	URL	References	API
KEGG	It is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information.	http://www.genome.jp/kegg	27	•
LINCS	It contains details about the drug assays, cell types, and perturbagens that are currently part of the library, as well as software that can be used for analyzing the data.	http://www.lincsproject.org/ LINCS/	46	•
OMIM	It is a comprehensive, authoritative compendium of human genes and genetic phenotypes that is freely available and updated daily. The full-text, referenced overviews in OMIM contain information on all known Mendellan disorders and over 16,000 genes, and it focuses on the relationship between phenotype and genotype.	https://www.omim.org/	47	
PathBank	PathBank is designed specifically to support pathway elucidation and discovery in transcriptomics, proteomics, metabolomics, and systems biology.	https://pathbank.org/	48	NA
PathwayCommon	Pathways including biochemical reactions, complex assembly, and physical interactions involving proteins, DNA, RNA, small molecules, and complexes.	http://www. pathwaycommons.org/	49	
PDSP Ki	It contains bioactivity data in terms of k _i especially for GPCRs, ion channels, transporters, and enzymes.	https://pdspdb.unc.edu/ pdspWeb/	50	•
PharmGKB	It contains comprehensive data on genetic variation on drug response for clinicians and researchers.	https://www.pharmgkb.org/	51	•
Probes & Drugs Portal	A public resource joining together focused libraries of bioactive compounds (e.g., probes, drugs, specific inhibitor sets).	https://www.probesdrugs.org/ home/	52	NA
Pubchem	It provides varieties of moiecular information including the chemical structure and physical properties, biological activities, safety and toxicity information, patents, literature citations, and so on.	https://pubchem.ncbi.nlm. nih.gov/	29	
STITCH	It stores known and predicted interactions of chemicals and proteins, and currently covers 9,643,763 proteins from 2031 organisms.	http://stitch.embl.de/	53	•
Supertarget	A data resource is used for analyzing drug-target interactions and drug side effects.	http://bioinf-apache.charite. de/supertarget/	54	NA
SwissTarget- Prediction	It contains information on predicted targets of drugs based on the similarity principle through reverse screening.	http://www. swisstargetprediction.ch/	55	NA
TTD	Therapeutic Target Database (TTD) provides information about the known and explored therapeutic protein and nucleic acid targets, the targeted disease, pathway information, and the corresponding drugs directed at each of these targets.	https://db.idrblab.org/ttd/	56	NA

API, Application Programming Interface. *indicates that the dataset provides API. NA indicates that there is no API in the dataset.

Pan, Xiaoqin, et al. "Deep learning for drug repurposing: Methods, databases, and applications." Wiley Interdisciplinary Reviews: Computational Molecular Science (2022)

Databases: Drug Repurposing Hub

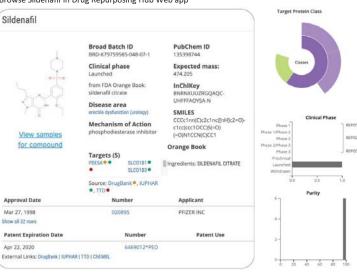
Drug Repurposing Hub

- A <u>curated and annotated collection</u> of FDAapproved drugs, clinical trial drugs, and preclinical tool compounds with a companion information resource.
- Hand-curated collection of compounds were <u>experimentally confirmed</u> and annotated with literature-reported targets.
- Each drug information includes compound name, <u>clinical phase</u>, mechanism of action, and protein target.

Statistics of Drug Repurposing Hub

Category	Count
Total samples	16,826
Protein targets	2,183
Unique compounds	7,934
Drug indications	670

Browse Sildenafil in Drug Repurposing Hub Web app

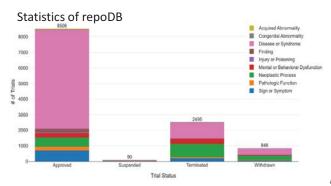


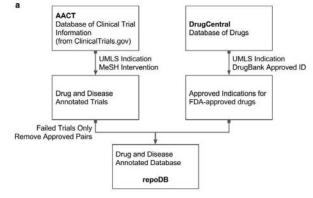
Corsello, Steven M et al. "The Drug Repurposing Hub: a next-generation drug library and information resource." Nature medicine vol. 23,4 (2017)

Databases: repoDB

repoDB

- A standard set of drug repositioning <u>successes</u> and failures that can be used to fairly and reproducibly benchmark computational repositioning methods.
- · Data were extracted from DrugCentral and ClinicalTrials.gov.
- Each drug information includes compound name, clinical phase and disease name.

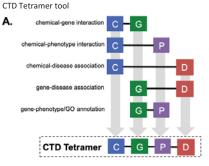




Category (status)	Drug count
Approved	2,162
Suspended	78
Terminated	518
Withdrawn	336

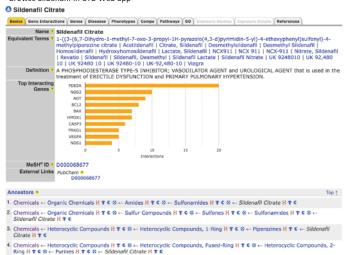
Brown, A., Patel, C. A standard database for drug repositioning. Sci Data 4, 170029 (2017)

- Comparative Toxicogenomics Database
- Provides manually curated information about chemical-gene or protein interactions, chemicaldisease, and gene-disease relationships.
- Recent version of CTD offers a CTD Tetramer tool that generates potential molecular mechanistic pathways.



Curated Exposure Statements	204,467
Unique Chemicals	1,500
Unique Genes	1,084
Unique Diseases	488
Unique GO Terms	484
Curated Exposure References	3,300

Browse Sildenafil in CTD Web app



Davis, Allan Peter et al. "Comparative Toxicogenomics Database (CTD): update 2023." Nucleic acids research, gkac833. 28 Sep. 2022

PharmacoDB

- A web-application database that <u>integrates</u> <u>multiple cancer pharmacogenomics datasets</u> profiling approved and investigational drugs across cell lines from diverse tissue types.
- Offers a <u>standardized</u> cell line, drug identifiers and data format for drug sensitivity measurements.
- Included cell line data from..
 - CCLE, CTRPv2, FIMM, GDSC1, GDSC2, GRAY, NCI60, PRISM, UHNBreast, gCSI

Paclitaxel in PharmacoDB Web app Paclitaxel Synonyms Amoutations Sources Annotations Sources Annotations Sources Annotations Sources Annotations Sources Annotations Sources Annotations Bar Piolis CCLE, FIRMA, GDSCI, GDSCI, GBAY, NCBO Paclitaxel Bar Piolis GCSI AAC (Tissues) AAC (Tissues) AAC (Tissues) Cell Lines Bummany Identifiers Tissues Bummany Identifiers Tissues Bummany Molecular Features Molecular Features Number of cell lines tested with Paclitaxel liper Action Action of tissues tested with Paclitaxel liper Action Acti

Statistics of PharmacoDB

Feizi, Nikta et al. "PharmacoDB 2.0: improving scalability and transparency of in vitro pharmacogenomics analysis." Nucleic acids research vol. 50,D1 (2022)

TechnologyNetwork analysis technologies

Network analysis technologies

Analytical algorithms describing human gene networks have been developed for three major tasks in disease research:

- 1. Disease gene prioritization,
- 2. Disease module discovery, and
- 3. Stratification of complex diseases.

Network-based Drug Repurposing Technologies

SNF-cVAE (Knowledge-Based Systems, 2021) CBPred (Cells, 2019) DeepDR (Bioinformatics, 2019) BiFusion (ISMB 2020) Semantic Teleport (in revision)

The Main Issue for Network-based Drug Repurposing

Discover drug-disease relationship using

- Drug network
- Gene network
- Disease network

Hetionet database:

- drug-drug network: 1552 nodes, 6,486 edges
- disease-disease network: 137 nodes, 543 edges
- gene-gene network: 20,945 nodes, ~200,000 edges
- drug-gene edges: ~50,000diseass-gene edges: ~30,000

Major Issues for Drug Repurposing

- There are multiple ways to learn embedding vectors for drug
 - Drug-centered embeddings from Drug-drug, Drug-target, Drug-disease.
 - Then, how to combine different views on drugs?
- Three-way relationship among drug-gene-disease cannot be learned at once.
- In the end, we need to deduce drug-disease binary relationship.
 - Basically, binary relationships are somehow combined on different layers, hierarchically.

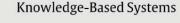
Network-based Drug Repurposing Technologies

SNF-cVAE (Knowledge-Based Systems, 2021) CBPred (Cells, 2019) DeepDR (Bioinformatics, 2019) BiFusion (ISMB 2020) Semantic Teleport (BioRxiv. In review)

Network-based Drug Repurposing: Cases

Knowledge-Based Systems 212 (2021) 106585

Contents lists available at ScienceDirect



journal homepage: www.elsevier.com/locate/knosys

SNF-CVAE: Computational method to predict drug-disease interactions using similarity network fusion and collective variational autoencoder

Tamer N. Jarada a, Jon G. Rokne a, Reda Alhajj a,b,c,*

- ^a Department of Computer Science, University of Calgary, Calgary, Alberta, Canada ^b Department of Computer Engineering, Istanbul Medipol University, Istanbul, Turkey ^c Department of Health Informatics, University of Southern Denmark, Odense, Denmark

Network-based Drug Repurposing: Cases

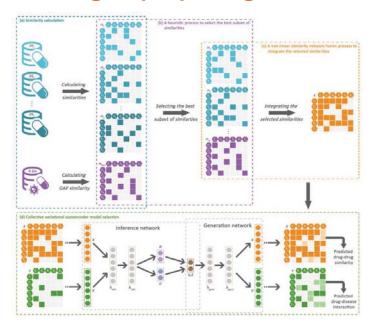
SNF-CVAE

- Input:
 - Drug-related similarity information
 - · Drug-disease interactions
- Method:
 - Similarity network fusion (SNF)
 - Drug similarity network using drug-related data sets and drug-disease interaction dataset.
 - Collective variational autoencoder (CVAE)
 - Training cVAE with drug similarity (from above) and drug-disease interaction.
- Predicted drug candidates for potentially treating Alzheimer's disease and Juvenile rheumatoid arthritis.

Jarada, Tamer N., Jon G. Rokne, and Reda Alhaji. "SNF–CVAE: computational method to predict drug–disease interactions using similarity network fusion and collective variational autoencoder." Knowledge-Based Systems 212 (2021): 106585.

Network-based Drug Repurposing: Cases

SNF-CVAE



Jarada, Tamer N., Jon G. Rokne, and Reda Alhajj. "SNF–CVAE: computational method to predict drug–disease interactions using similarity network fusion and collective variational autoencoder." Knowledge-Based Systems 212 (2021): 106585.

Network-based Drug Repurposing: Cases

Article

Convolutional Neural Network and Bidirectional Long Short-Term Memory-Based Method for Predicting Drug-Disease Associations

Ping Xuan ¹, Yilin Ye ^{1,*}, Tiangang Zhang ^{2,*}, Lianfeng Zhao ¹ and Chang Sun ¹

- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
- * Correspondence: YeYilinCN@outlook.com (Y.Y.); tiangang_zhang01@126.com (T.Z.); Tel.: +86-132-4840-5705 (Y.Y.); +86-188-4503-0636 (T.Z.)

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations." Cells 8.7 (2019): 705.

Network-based Drug Repurposing: Cases

CBPred

- · Input:
 - Drug similarity matrix (fingerprint-based)
 - Disease similarity matrix (MeSH-based)
- Goal:
 - · Enrich paths between drugs and diseases
- Method:
 - Convolutional Neural Network (CNN)
 - Learn the association representation of drug-disease pairs from their similarities and associations.
 - Bidirectional LSTM (BiLSTM)
 - Learns path representation of drug-disease pair.
- Provided a list of novel drug-disease associations for drug repositioning

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations." Cells 8.7 (2019): 705.

Network-based Drug Repurposing: Cases

CBPred

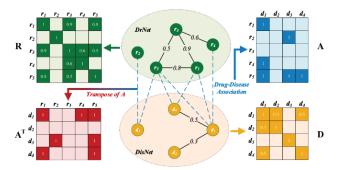


Figure 1. Construction of drug-disease heterogeneous network DrDisNet. R and D are the similarity matrix of drugs and diseases, respectively. A is the association matrix between drugs and diseases, while A^{T} is the transpose of A.

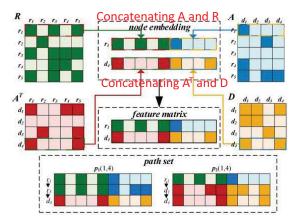
R and D are easily constructed by comparing rows and colums as vectors.

A is from prior knowledge.

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations." Cells 8.7 (2019): 705.

Network-based Drug Repurposing: Cases

CBPred



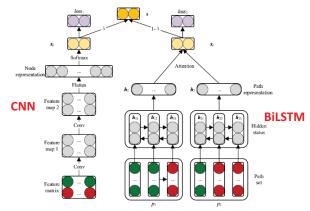


Figure 2. Construction of the framework based on the convolutional neural network and bidirectional long short-term memory for learning the original and path representations.

Xuan, Ping, et al. "Convolutional neural network and bidirectional long short-term memory-based method for predicting drug-disease associations." Cells 8.7 (2019): 705.

Network-based Drug Repurposing: DeepDR

Bioinformatics

JOURNAL ARTICLE

deepDR: a network-based deep learning approach to *in silico* drug repositioning **a**

Xiangxiang Zeng, Siyi Zhu, Xiangrong Liu, Yadi Zhou, Ruth Nussinov, Feixiong Cheng ▲ Author Notes

Bioinformatics, Volume 35, Issue 24, 15 December 2019, Pages 5191–5198, https://doi.org/10.1093/bioinformatics/btz418

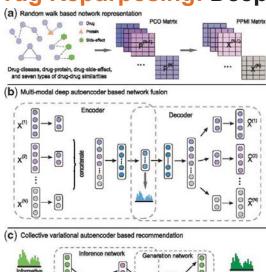
Published: 22 May 2019 Article history ▼

Zeng, Xiangxiang, et al. "deepDR: a network-based deep learning approach to in silico drug repositioning." Bioinformatics 35.24 (2019): 5191-5198.

Network-based Drug Repurposing: DeepDR

- Input: Integrated network of 10 different networks:
 - · one drug-disease,
 - · one drug-side-effect,
 - · one drug-target and
 - seven drug-drug networks
- Method: A three-step approach for drug repurposing
 - 1. Random walk-based representation of 10 networks
 - 1. Probabilistic co-occurrence matrix construction by random walks
 - 2. Shifted pointwise mutual information (PPMI) → factorization of co-occurrence matrix for network representation.
 - 2. Multi-modal deep autoencoder (MDA) based network fusion of 10 network representations
 - 3. Collective VAE for new drug-disease association prediction: uses
 - 1. Extracted features from MDA (side (auxiliary?) information)
 - 2. Known drug-disease associations
- The predicted drug-disease associations were validated by the ClinicalTrials.gov database

Network-based Drug Repurposing: DeepDR



Zeng, Xiangxiang, et al. "deepDR: a network-based deep learning approach to in silico drug repositioning." Bioinformatics 35.24 (2019): 5191-5198.

Network-based Drug Repurposing: BiFusion

Bioinformatics

JOURNAL ARTICLE

Toward heterogeneous information fusion: bipartite graph convolutional networks for *in silico* drug repurposing ∂

Zichen Wang, Mu Zhou ™, Corey Arnold ™ Author Notes

Bioinformatics, Volume 36, Issue Supplement_1, July 2020, Pages i525-i533,

https://doi.org/10.1093/bioinformatics/btaa437

Published: 13 July 2020

Wang, Zichen, Mu Zhou, and Corey Arnold. "Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing." Bioinformatics 36. Supplement_1 (2020): i525-i533.

Network-based Drug Repurposing: BiFusion

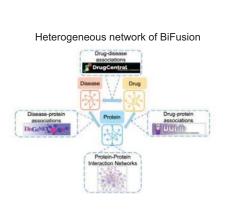
BiFusion (Wang et al., ISMB 2020)

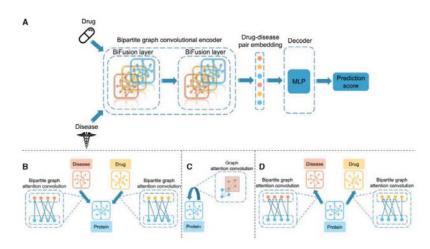
- Input:
 - · Drug-protein-disease heterogeneous network
- Method: 3-step deep learning framework
 - · A bipartite GCN encoder for drug-disease pair embedding
 - Bipartite graph attention to protein (gene or protein centric)
 - disease→protein
 - drug → protein
 - Bipartite graph attention from protein (gene or protein centric)
 - protein → disease
 - protein → drug

Wang, Zichen, Mu Zhou, and Corey Amold. "Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing." Bioinformatics 36.Supplement_1 (2020): i525-i533.

Network-based Drug Repurposing: BiFusion

BiFusion (Wang et al., ISMB 2020)





 $Wang, Zichen, \textit{Mu Zhou}, \textit{and Corey Arnold.} \end{"Toward heterogeneous information fusion: bipartite graph convolutional networks for in silico drug repurposing."} \\ \textit{Bioinformatics 36.Supplement_1 (2020): i525-i533.} \\$

Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in revision)

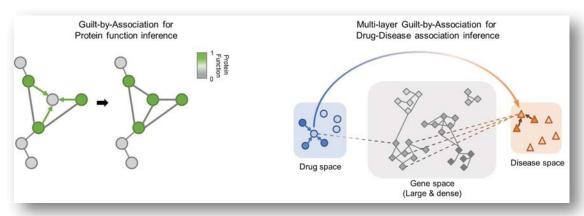
Multi-layer guilt-by-association-based drug repurposing by integrating clinical knowledge on biological heterogeneous networks

Dongmin Bang^{1,2}, Sangsoo Lim³, Sangseon Lee⁴, and Sun Kim^{1,5,6*}

Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)

- Input:
- Drug-gene-disease heterogeneous network
- Method:
 - Semantic multi-layer Guilt-by-association
 - · Implemented by random walk with clinical knowledge-guided teleport
 - Teleport is performed to semantically similar neighbor drug/diseases



¹Interdiciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea

²AIGENDRUG Co., Ltd., Seoul, Republic of Korea

³Bioinformatics Institute, Seoul National University, Seoul, Republic of Korea

⁴Institute of Computer Technology, Seoul National University, Seoul, Republic of Korea

⁵Department of Computer Science and Engineering, Seoul National University, Seoul, Republic of Korea

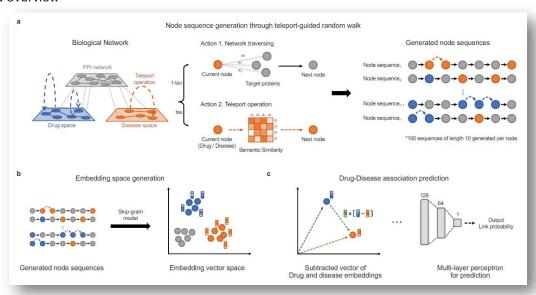
⁶Interdiciplinary Program in Artificial Intelligence, Seoul National University, Seoul, Republic of Korea

^{*}For whom the correspondence should be: sunkim.bioinfo@snu.ac.kr

Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)

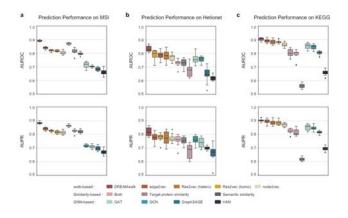
· Method overview

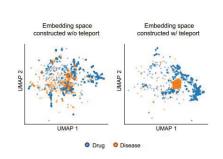


Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)

- Results:
 - State-of-the-art drug-disease association prediction
 - · Harmonious embedding space of both clinical and biological contexts





Network-based Drug Repurposing: DREAMwalk

DREAMwalk (Bang et al., in preparation)

- Results:
 - Drug repurposing for breast carcinoma and Alzheimer's disease: well supported by literatures

	Breast Carcinoma				
Rank	Drug	Original Indication	Avg. prob.	SD	Evidences
1	Hydroxyurea	CML, cancer of head and neck, sickle cell anemia	0.9868	0.028	56–59
2	Irinotecan	Colorectal cancer, SCLC, NSCLC	0.9854	0.021	60–62
3	Carmustine	Brain tumors, multiple myeloma, Hodgkin disease, NHL	0.9851	0.026	63,64
4	Clofarabine	ALL	0.9817	0.022	65,66
7	Etoposide	Germ cell tumors, Kaposi sarcoma, SCLC	0.9777	0.038	61,64
9	Vinblastine	Hodgkin disease, Lymphoma, NHL	0.9722	0.037	61,64
10	Erlotinib	NSCLC, Pancreatic cancer	0.9711	0.069	67–69
		Alzheimer's disease			
Rank	Drug	Original Indication	Avg. prob.	SD	Evidences
1	Melatonin	Blind vision, sleep disorders	0.9953	0.006	70,71
3	Amantadine	Extrapyramidal disorders, Parkinson's disease	0.9926	0.016	72,73
4	Piribedil	Dizziness, Parkinson's disease	0.9887	0.018	74–76
7	Pramipexole	Parkinson's disease, restless legs syndrome	0.9822	0.027	77–79
9	Phenibut	Anxiety	0.9809	0.042	80,81
10	Fluoxetine	Bipolar disorder, Depressive disorder	0.9799	0.036	82,83

Summary of Drug Repurposing

- There are multiple ways to learn embedding vectors for drug
 - Drug-centered embeddings from Drug-drug, Drug-target, Drug-disease.
 - Then, how to combine different views on drugs?
 - · deepDR: Multi-modal deep autoencoder
 - SNF-cVAE: similarity network fusion
 - DreamWalk: semantic random walks
- Three-way relationship among drug-gene-disease cannot be learned at once.
- In the end, we need to deduce **drug-disease binary relationship**.
 - Basically, binary relationships are somehow combined on different layers, hierarchically.
 - deepDR: Multi-modal deep autoencoder; then cVAE for drug-disease
 - SNF-cVAE: similarity network fusion; then cVAE for drug-disease
 - BiFusion: protein-centric bipartite graph attention twice; then MLP for drug-disease
 - **Zhang, Zhao et. al**: row pairing from drug-drug, drug-disease, disease-drug matrices; path generation by aligning paired vectors; then CNN + LSTM for drug-disease
 - **DreamWalk**: semantic random walks; then drug-disease embedding in the same space; then similarity between drug vector and disease vector for drug-disease

감사합니다!	