KSBi-BIML 2024 Q%

Bioinformatics & Machine Learning(BIML)
Workshop for Life and Medical Scientists

S33Ee! S MAEE 38 (=212)

Shrinkage Methods and
Tree Ensembles for
High—dimensional Sparse Data

ol

ook

Tl _ sAistw

J

OOOOOOOOOOOOOOOO
IIIIIIIIIIIIII

@ KSBI | sizygyrety



E

BIML 2024 %3

=
—

7t 25t

PA & LICH

2 g 25 o|Qlo| Ct2

Ao

L
—

o

Ho

ol

ulJ

d
o)

=

Ell



KSBi-BIML 2024
Bioinformatics & Machine Learning(BIML)
Workshop for Life and Medical Scientists

H L7t

L5

t

L
8

Propl 3 R MR T <] ow m Kk o N T o - o ® o ol ol X
H ol W mM ¥\ ® 3 g o o M M K 9 o B Ik = I m N
Mw W o= oy w S o N0 &l mm s oW o K = @1 O m ol
% K & oo T T g Lo KR o Z g & kD T | Y
L e wmz = 7" = w2z w Ro= d L L ST
oo o™ S oo < I O L o0 X N KO
J M 10 F1 1w G W o o @ Q9 I N ol
R Wy nErs ST W oo = =
e K ogr do N X A zo T K - = S I L] N
REZwmageogpd Tl il g2 32wl @
o o Ho &n <k IH o X .|_..A..._| M 4 35 d KO ™ 50
on  ®O o ol o ST M &7 o o N0 R0 =S 5 W — = {p
TH e i S0 g oo Do = N 2 O F = 0
7 W @ 4 T x5 0 o o wm & w oA g rr
_ Mo ow o B W X S om oy 8 gy Z @ oe A
M ~— ® ¥ O ~N KI X of © M @0 = .n.m: o B0 o @l ~H
S _.__H._u_._ L o Mm: mn__..__ 8l 1 s o = %E EF.__I._ _Alo i B o Ho 1 =
N 5 5 = M_M T Y = = o S o m 5 S g o
W_ o) K o Ho ol ol o =) N ly ] = o N Kk S H
= o ol oo H &% o © T 8 ™ 55 D = @ o) <
o 4 K W& S ) o 9 = Ol o O "
51 = = H B © 7 o Ko ou I L R T ) oo N
o N _ o g K I m oz o8 © OB 4oy N ey
g T S L A < N N mom ook o H O Ebonoq
m 1M oI H <o ._mo K0 M <Ko K = m o0 <k N__n
F 7 5 - oo KW [ - = o7 <
o 5 N B N ! «E ol R O T T 0
2 0 o =+ 2 o' o
fegiso s LRERTEIEY Sa s
=g J®agdzs Pg SR W om g ROBOS o T B OE
w g M P xR T B K oI g M0 q oz 5 W IH ¢ O+ T K
Jp o Y= u- T IR B I (L A Toxomo
=z _ 2 3 o W owRow =5 g © o oopoHl o om ool - X B
B 2 M g g2 o HgU s 7w BP0
H g @ ol w_._ 0l0 T N K A %_ R K R0 ~ TS o0 R -2
X _ Gl s S o gy o% g T N v & _ o N oof W -
T 2wy RN 4w Ty s E By BT
0 S _|._ K X = A_“_”_ ~ o . ol il _IH_ ~0 H =0 A un| ~O o] |__|_
oy oF B = R - - S L B =1 U R
jol = My = o ol ] [y ~ pa| ol ] 5 = Kd 100 ol o+ o
iy H S | = TN — == K __ o op ©
] D . T R ] = ¥ I - B y - K W T
g O oy FOM oW s gz om F OO oo o 3 N K
J— E i —_ _ o A —_ J— T J— o | —7 e
g BT xRt =gz T T E g w
& o T Ho B o ® m ¥ N R ©o ® 0 om X0 W5 T KOOI
!/ I K <KD ool o R0 T ol Kmo oom K- uu 1 oF o H K WM @ N T



pAslbd Bed

Shrinkage Methods and Tree Ensembles
for High-dimensional Sparse Data

Y=L TR E B2 HOIHE2 B2 Jiss BEAY 22 37|= "dUiNez A2 1

2 YOoXls RUA 2o HOHE 8 ~ 0 Jie 30| et & §E& 7HX2 AR
B29| 47|= HEE % ~ 20| X|LHX| E=C

OlM= Xt 3|8 HO|H 7L 7|AghE0 oMt AHYS O|X| =X HaHxez HAHS
1, 0|2{t HIOJHE BAMst= O 22| AH2ElE shrinkage 21t tree ensembleOf CH A ot
Ct ME3s| S ZX|IAE 3|4 7|89| shrinkage @R0| Offst Mefoz NXY 3|8 HOjH &

ME siZst=Al d%stn, O AN 28 YOl CHo Zelstct. Eo, DXt

e Bias-Variance Trade-Off

o XY 3l HolHe ZHH

e Shrinkage 28 (Ridge, Lasso, Elastic Net)

e Tree Ensemble (Bagging, Random Forest, Boosting)

« &nzto| mAy:

An Introduction to Statistical Learning: with Applications in R (Springer, 2013)
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Curriculum Vitae

Speaker Name: Kyu-Baek Hwang, Ph.D.

» Personal Info

Name Kyu-Baek Hwang
Title Professor
Affiliation Soongsil University

» Contact Information

Address 369 Sangdo-ro, Dongjak-gu, Soongsil University,
Seoul 06978
Email kbhwang@ssu.ac.kr

Phone Number  02-820-0925

Research Interest

Machine learning and bioinformatics

Educational Experience

1997 B.S.E. in Computer Engineering, Seoul National University, Korea
1999 M.S.E. in Computer Engineering, Seoul National University, Korea
2005 Ph.D. in Computer Science and Engineering, Seoul National University, Korea

Professional Experience

2004 Short-term Visiting Scholar, Children’s Hospital Boston, USA
2012 Visiting Research Associate, Boston Children’s Hospital, USA
2006 Professor, Soongsil University, Korea

Selected Publications (5 maximum)
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discovery-rate-controlling strategies for proteogenomic search using spike-in experiments,
Journal of Proteome Research, vol. 16, no. 6, pp. 2231-2239, 2017.

. Li, H, Joh, YS, Kim, H., Paek, E, Lee, S.-W., and Hwang, K-B., Evaluating the effect of

database inflation in proteogenomic search on sensitive and reliable peptide identification,
BMC Genomics, vol, 17, no. Suppl 13, p. 3327, 2016.

. Seok, H.-S., Song, T, Kong, SW., and Hwang, K-B., An efficient search algorithm for finding

genomic-range overlaps based on the maximum range length, IEEE/ACM Transactions on
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Bias-Variance Trade-Off

A Machine Learning Example:
Advertising Problem

* How to improve sales of a particular product
— By controlling the advertising expenditure

« Data
— Sales of the product in 200 different markets

— Advertising budgets for the product in each of those markets for
three different media: TV, radio, and newspaper

 Goal ‘

— Develop an accurate model for predicting sales given the three
media budgets

§aoBi ez




A Statistical Learning Setting

* Input variables
— TV budget (X,), radio budget (X,), and newspaper budget (X;)
— Different names
» Predictors, independent variables, features, and variables
* Qutput variable
— sales (Y)
— Different names
* Response, dependent variable, and target variable
* Our assumption
- Y=fX)+¢
— f: a function
— €. an error term

SadBiEzeEE=s

Statistical (Machine) Learning

* We try to estimate “f” from a given (training) data set

* Machine learning is about a set of approaches to
estimating the f

« Diverse disciplines are related to machine learning
— Computer science
— Electronic engineering
— Statistics

SaoBi RRgBT=As




Types of Machine Learning

* Supervised learning

— Atarget variable (Y) is given

— Regression vs classification

— Disease diagnosis based on a lab test
* Unsupervised learning

— There is no target variable

— Exploratory data analysis; feature extraction

— Clustering of genes based on their expression patterns
* Reinforcement learning

— Instead of a target variable, reward is given to an agent
— AlphaGo
— Robot navigation (mapping and localization)

SadBiEzeEE=s

Types of Supervised Learning

» Quantitative target-variables
— Numerical values
— Age, height, income, sales
— Regression
» Advertising problem
* Qualitative target-variables
— Categorical values
— Gender, cancer diagnosis
— Classification

SaoBi RRgBT=As




Why Estimate f?

* Prediction

— If we estimated f, we can use it for predicting the value of Y (output
variable) for a specific x

* Inference
— We are interested in understanding the way that Y is affected as X,
..., X, change
» Possible questions addressed
— Which predictors are associated with the response?

— What is the relationship between the response and each predictor?
* Increasing the predictor will increase or decrease the response

— Can the relationship between Y and each predictor be adequately
summarized using a linear equation, or is the relationship more
complicated?

SadBiEzeEE=s

Performance of a (Learned) Regression Model:
Mean Squared Error (MSE)

» Average difference between the true observed-response
(y,) and the predicted one (f (x;))

— If we have a training data (X and y)

Y1 11 T12 ... T1p
Yo To1 o2 ... Tay 1 n X
y=1.1%1]: SR MSE:EZ(yi_f(xi))z
i=1
Un Tl Tn2 i irnp

— A.k.a. Training MSE

 However, we are more interested in MSE for future
observations
— Stock market prediction
— Diabetes risk prediction

SaoBi RRgBT=As




Test MSE

* We could think about MSE over test observations (x,, Y,)
Ave(yo = f(x))?

— Minimization of test MSE is required!!!

 How can we minimize test MSE
— If we have a set of test observations, the problem is simple
» Test observations are not used for training

— What if we do not have test observations?
* Can we use training MSE instead of test MSE for assessing models?

SaoBi =gy

Training MSE vs Test MSE

2.5

2.0

1.5

Mean Squared Error
1.0

X Flexibility

» Simulation experiments
— Black curve: truth
— Circles: training data (sampled from the black curve)

— Orange, blue, and green curves: learned results with differing
complexity levels (different machine learning models)

— Overfitting phenomenon

§aoBi ez




A Smoother True Function
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* Linear line now?

§aoBi ez




How Come Such a Phenomenon Occurs

» Mathematical proof is possible
« We are concerned with

Ave(yo = f(x0))?

* It can be decomposed as
E(yo — f(x0))? = Var (f(xo)) + [Bias(f(xo))]” + Var(e)

— Expectation over training observations (= training data)

* Variance

— The amount by which f (learned result) changes according to the given
training data set

* Bias
— The error introduced by modeling the given problem using a machine
learning model

faoBidAeEy=as

Observations vs Theory

2.5

& | w—MSE

20

1.5

Flexibility Flexibility Flexibility

* The bias-variance trade-off
« Training errors decrease as the model complexity increases

» Test errors show a u-shaped curve

— We must choose an appropriate level of model complexity to obtain
a good test error

.0 CD B2 A A H B
¢o OB E=eEyEes




Linear Regression &
High-Dimensional Sparse Data

17

Regression for the Advertising Data Set

* We have a data set (Advertising)
— Sales (Y), TV (Xy), radio (X,), and newspaper (X3) (from 200

cities)

el
~N

Sales

Te® ‘S ANCY A 5B
§a SBI LICA-X it

Sales

0 10 20 30 40 50

Radio

Sales

0O 20 40 60 80 100

Newspaper

18




Multiple Linear Regression

* Regression formula
Y =06y + B81X1 + 82X +"'+6po+6

sales = By + 81 X TV + (B3 X radio + B33 X newspaper + €

* Meaning of g;

— Average effect of X; on Y when all other predictor values are
fixed

SaoBi =gy

Estimation of the Coefficients in Multiple Linear
Regression

« We estimate S, f1, ..., B, as the values that minimize the
sum of squared residuals

T

RSS = > (i)
i—=1
T

— (yi — .30 = 31:'1-';1 = .32'1:;.2 = U= B;:B; ;)2
> i

i=1

« Least squares method
» Measures for model fit in multiple linear regression

— RSE = (reS|duaI standard error)

TSS RSS
s (the fraction of variance explained)

* TSS =X (i —)?

— R?

§aoBi ez

- 10 -




High-Dimensional Sparse Data

 Low dimensional data

— Predicting blood pressure based on age, gender, and body mass
index

— Data from thousands of people can be obtained
- p <<n
« High-dimensional sparse data
— Blood pressure prediction using millions of single nucleotide
polymorphisms (SNPs)
— Data from thousands of people can be obtained
- p>n
» Classical approaches such as the least squares is not
appropriate for the high-dimensional cases

SadBiEzeEE=s

Least Squares Regression in a Low-Dimensional
Setting

e p=1,n=20vsn=2

o _|
|

-10

I [ I I I I
=15 =10 =05 00 05 1.0 =15 =10 =05 00 05 1.0

— When n <p orn = p, the least squares is too flexible to prevent the
overfitting

SaoBi RRgBT=As
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Impact of the Number of Predictors

* Nn=20;p=11to0 20

— All the predictors were unrelated with the response
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Shrinkage Methods
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Linear Models for High-Dimensional Sparse Data

* Even linear models with the least squares are too flexible
for some cases
— If n > p: high variability - overfitting
— If n < p:infinite variability - infinite models can fit the data
« Alternative fitting procedures than the (ordinary) least
squares are required

SadBiEzeEE=s

Idea of the Shrinkage Method

« Constrain or regularize the coefficient estimates
— Shrink the coefficient estimates towards zero
» Shrinking the coefficient estimates could reduce their

variance
— Bias-variance trade-off

([ J ([ J
[ J [ J
o ® o ® o ® o ©®
No shrinking Shrinking
* Ridge
« Lasso

SaoBi RRgBT=As

- 13 -




Ridge Regression

* Ordinary least squares methods minimize

RSS = i (3’1’ - Bo — iﬁj%j)
i=1 =

 Alternatively, we minimize the following

p
RSS + AZ B
=1

— A: tuning parameter
» Control the relative impact of shrinkage

SadBiEzeEE=s

Ridge Regression (cont’d)

1%
,125]2
=1

« Shrinkage penalty

— Effect of shrinking the estimates of §; towards zero

» Setting a good value for 1 is important

§aSBiE=EE=As
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Effect of Ridge on Regression Coefficients
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» Predict balance using ten predictors including income, limit, rating,
and student

« Left-hand plot: 1 as x-axis value
~ R
B
* Right-hand plot: % as x-axis value
2
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N koK

Effect of Ridge on Regression Coefficients (cont’d)

» Scale equivariant
— Ordinary least square estimates
* X;p; is invariant regardless of the scale of X;
— Ridge regression
« Standardizing the predictors is needed (y-axis of the previous plot)

xij

_\2
YR (xi—%))

§aoBi ez
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Bias-Variance Trade-Off in Ridge Regression
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» Simulated data set (p = 45, n = 50)
— Very sparse
« Squared bias, variance, and test MSE

« The variance decreases substantially without substantial
increase in bias till A = ~10 (left-hand plot)

SadBiEzeEE=s

Advantages and Disadvantages of Ridge Regression

« Advantages
— Ridge regression works very well in situations where the least
squares method results in high variance
* In many bioinformatics data sets, e.g., microarray analysis
— Other benefits of ridge regression
» Less computation is needed compared with other methods, e.g.,
best subset selection

» Disadvantages

— All predictors are used unless 4 = o
» Can be problematic when interpreting the regression result
(especially when p is large)
* The subset selection approach could do this
» Shrinkage methods for this?

SaoBi RRgBT=As
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Lasso

» Least Absolute Shrinkage and Selection Operator
» Objective function for lasso
— RSS+AX7_4|B]

— |, penalty

* In lasso, coefficient estimates for some predictors are
exactly zero if 1 is sufficiently large

SadBiEzeEE=s

Effect of Lasso on Regression Coefficients
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 When A1 is very large (i.e., > 5,000), only one predictor (rating)

is included.
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- == Limit
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 As A decreases, student and limit are added

» Effect of predictor subset selection

SaoBi RRgBT=As
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Shrinkage Viewed as Constrained Optimization

* Ridge
2
- mﬁin{ ?=1(3’i = Bo = Xj-y ﬁjxif) } subject to X7_, ;" < s
« Lasso
2
- m[}n{ a3 = o = Sy Bxi;) | sublectto 7|6 < s

SadBiEzeEE=s

Comparison between Ridge and Lasso
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» Contours of the error and constraint functions for ridge
(right) and lasso (left)
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Results of Lasso on Simulated Data Sets (Compared

with Ridge)

* 45 predictors _° e
g = !/’:JI g e Ny
o.02 0.10 0.50 .'\ 2.00 10.00 50.00 0.0 0.2 H2 Onﬂ.:-rainin;BData 0.8 1.0
* Only 2 predictors out of the 45 were used for data
generation 24 T @
% 8 _'I‘f" % 8 -
ug 2 ) /" (g <
- J 2 = ‘._/_;'
0.02 0.10 0,50/\ 2.00 10.00 50.00 0.4 0.5 R;;:n Tr:":mg g&;ja 0.9 1.0
SaoBidFeBY=a
How to Determine the Value of A for the Shrinkage
Methods
* Cross-validation can be applied
— The Creditdata ; ; g 1
— The simulated data set (2 out of 45 predictors are reléted)
= ‘§‘_ '_/Jr % 2 ; e _/’_rf__
%" # E -l
g P B :
O g1 i 3w
B . S B
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Lasso on a High-Dimensional Data Set

« n=100; p =20, 50, 2000

— Only 20 predictors were related with the response

) = 20 ) = 50 ) = 2000
1 ! /
wn - w - w -
o -
<+ - -+ - + —
-_T _—
| ! . .
1 1 I i
I 1
o o o i
.
.
? ! '
"1 - B3] 1
o L]
N ! ' —_—
.
E _ E ! o
- - —_— _n_l - . — - -
L= (=N (=N
T I I I I | 1 1 1
1 16 21 1 28 51 1 70 11
Degrees of Freedom Degrees of Freedom Degrees of Freedom

— Degrees of freedom: # of non-zero coefficients

SadBiEzeEE=s

Curse of Dimensionality

« Adding additional signal features will improve the fitted
model

« Adding noise features will lead to a deterioration in the
fitted model

» Thus, new technologies (or hypotheses) that allow for
the collection of measurements for thousands/millions of
features are a double-edged sword

— Even if they are signal features, the variance incurred in fitting
their coefficients may outweigh the reduction in bias

SaoBi RRgBT=As
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Tree Ensembles

Tree-Based Methods

* Decision tree methods
— Stratifying or segmenting the predictor space into a set of simple
regions
— Use the mean or the mode of the training examples in the region
— The splitting rules can be summarized as a tree

* A simple and useful method
— Especially for interpretation

— However, not competitive with the best supervised learning
method in terms of prediction accuracy

— Some techniques such as bagging, random forests, and
boosting can be used for addressing the prediction accuracy
problem

SaoBi RRgBT=As
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An Example Regression Tree

Years < 4.5
T

* Predict baseball players’ salaries
using regression trees
— Response: Salary (in natural logarithm)
— Predictors: Years and Hits

» Aregression tree learned from the

Hitters data set
— An upside-down tree
— Each internal node: a splitting rule
— Each terminal (leaf) node: a region
containing a set of examples
* The number denotes the mean Salary value
of the examples included

5.11

faoBidAeEy=as

Hits <[117.5

6.00

6.74

The Regions for the Hitters Data

* Three regions
- R, ={X]| Years < 4.5}
— R, ={X| Years 2 4.5 and Hits
<117.5}
— Ry ={X| Years 24.5 and Hits 2
117.5}
 Interpretation of the tree
— Years is the most important factor
— If a player is less experienced, Hits
does not play an important role
— Otherwise, Hits matters

R,

Hits

1

Io® ‘S ANCY A 5B
§a SBI LR b

Ry

238

1175

4.5

R,

Years

24
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An Example Classification Tree

Thgl:a
T
Ca405 Ca4 05
MaxHR|< 1615 Chestiain:be ves ves
No No
No Yes

 Heart data set
— Abinary outcome for 303 patients having chest pain
— Have heart disease or not

OB aadanpss ”

orean Society for Risirtformntics

Trees vs Linear Models

* Depends on the problem at hand

o o

= o

_ — 0
¢aopieay X x 0
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Performance Improvement of Tree-Based Methods

« High variance in decision trees

— If we randomly divide a data set into two and learn a decision
tree from each of them, then the results would be quite different

— Methods with low variance such as linear regression tends to
have low variance (if n is much larger than p)

» Bootstrap aggregation (i.e., bagging) could reduce this
problem

SadBiEzeEE=s

Averaging for Reducing Variances

« Given a set of independent observations Z,, Z,, ..., Z
with a common variance ¢?

n

_. g2
— The variance of the mean Z is %

* In a similar way, we could take B training data sets, build
a model from each of them, and average the resulting B
predictions

- f10, f2(), ..., fE)
— favg®) = %51 f2(0)

» Of course, the above procedure is not practical because
we usually do not have multiple training data sets

SaoBi RRgBT=As
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Bagging

* We can use bootstrap for taking averages from a single
data set

* Generate B bootstrapped training data sets (with
replacement)

« Train a method using each of the bootstrapped training
sets

« Average the predictions
— frag@) =225, 2 ()

§adBi#3sy=n

Bagging (cont’d)

» A graphical representation of the bootstrap approach

Obs |X |Y
3|53 |28 a1

> X
(3% B 7

Obs |X |Y ohe W

2 |21 |LI
1 43 |24 742

s —_——» X
Tt 3 |53 |28 .f (x)
3 53 |28 : _4'3 2
t

Original Data (D) <

Obs | X |Y

ST

A
21 1
43 |24

o | o

S e i

-25-




Bagging (cont’d)

« Trees in bagging are grown deep and not pruned
— Thus, each tree has low bias but high variance
— Averaging these trees reduces the variance

« Bagging has been demonstrated to give impressive
improvements by combining hundreds or thousands of

individual trees

« Bagging on the Heart data set
— Bagging with more than 100 trees could improve test accuracy
— Test error was estimated using a validation set approach

SaoBi =gy

Performance of Bagging on the Heart Data Set

0.30
|

0.25
I

Error
0.20
|

0.15
I

0.10
I

— Test: Bagging

Test: RandomForest
—— OOB: Bagging
—— 0OB: RandomForest
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o
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200
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Variable Importance Measure

« Bagged trees are hard to interpret

— Bagging improves the prediction accuracy at the expense of
interpretability

» Instead, we can aggregate the importance of each
predictor in each tree
— Alarge value denotes a high importance
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Importance of Variables in the Heart Data Set
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Correlation between Trees

 If there is one very strong predictor in a data set, that
predictor will be always included in the bagged decision
trees
— Moreover, most of the trees will use that predictor on top of the
splits
— Thus, all the bagged trees will look quite similar to one another,
resulting in a high correlation among them
» Averaging high correlated variables usually does not
lead to a large reduction of variance
— Test error of bagging would be large

* Thus, it is important to “decorrelate” the bagged trees
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Random Forests

 Idea for decorrelating the trees

— At each iteration of tree building, a random sample of m
predictors are considered instead of all p predictors

— This, we hope that the set of strong predictors would not be
chosen in some cases

— Usually m = ,/p is used for classification (p/3 for regression)

» By decorrelating the trees, the reduction of variance
would be substantial

« Random forests applied to the Heart data set
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Performance of Random Forests on the Heart Data
Set
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Random Forests for a Gene Expression Data Set

* A gene expression data set
— 4,718 genes
— 349 patients
— 15 class labels: normal and 14 different types of cancer

« 500 genes with high variance were selected
— 349 x 500 data matrix (very sparse!!)
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Performance of Random Forests on the Gene
Expression Data Set
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« Avalidation set approach was used
» Test error rate of a single tree: 0.457
* Random forests performed well
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Boosting

» Another method for prediction performance improvement

« Trees are grown sequentially
— Each tree is grown using information from previously grown trees
— Each tree is fit on a modified version of the original data set

Algorithm 8.2 Boosting for Regression Trees

1. Set f-'(_.r') =0 and r; = y; for all ¢ in the training set.
2. Forb=12...., B, repeat:

(a) Fit a tree f¥ with d splits (¢ + 1 terminal nodes) to the training
data (X, r).

(b} Update j: by adding in a shrunken version of the new tree:
F(e) = fx) + Af (). (8.10)
(e) Update the residunals.
ri =i = M) (8.11)

3. Output the boosted model,
B
flr) =D A (x). (8.12)
b=1
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Parameters for Boosting

* Number of trees B

— Alarge B values could result in overfitting

— CVis used to select B
» Shrinkage parameter 1

— A small positive number such as 0.01 and 0.001
* Number d of splits in each tree

— Controls the complexity of each tree
— Often d = 1 works well in practice (a.k.a. decision stumps)
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Comparison between Boosting and Random Forests
(the Gene Expression Data Set: Cancer vs Normal)
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