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Bayesian interpretation in the context of
large biological data collections

The advance of biotechnology has enabled the democratization of massive bio-data
generation at the level of individual laboratories, thus providing a multi-faceted view of the
complexity of living systems. Yet, much of this data is left under-utilized or sometimes even
misinterpreted owing to the lack of appropriate computational tools and bioinformatic
algorithms. In this course, we will cover the theorical basis of one computational technique
called the Bayesian methodology and its success in interpreting large biological data
collections. We will start by introducing the difference between Frequentist and Bayesian, and
then build up to probabilistic graphical models and specialized bioinformatic algorithms for
reconstructing biological networks from public data, quantifying gene expression by
expectation maximization, and more. It is not required but recommended to read the

following materials before this class:

1. Li, B, & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC bioinformatics, 12(1), 1-16.

2. Lee YS, Krishnan A, Zhu Q and Troyanskaya OG (2013) "Ontology-aware classification of
tissue and cell-type signals in gene expression profiles across platforms and technologies."
Bioinformatics 29 (23), 3036-3044
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Speaker Name: Young-suk Lee, Ph.D.

» Personal Info

Name Young-suk Lee
Title Assistant Professor
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p Contact Information
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Educational Experience

2010 B.S. Computer Science and B.S. Mathematics, The University of Texas at Austin
2014 M.S. Computer Science, Princeton University
2016 Ph.D. Computer Science, Princeton University

Professional Experience
2016-2020 Research fellow, Seoul National University and Institute for Basic Science
2020- Assistant Professor, Department of Bio and Brain Engineering, Korea Advanced

Institute of Science and Technology
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1. Lee S*, Lee YS* Choi Y, Son A, Park Y, Lee KM, Kim J, Kim JS, Kim VN (2021) “The
SARS-CoV-2 RNA interactome.” Molecular Cell *equal contributions

2. Kim D* Lee YS* Jung SJ* Yeo J* Seo JJ, Lee YY, Lim J, Chang H, Song J, Yang J, Jung G,
Ahn K and Kim VN (2020) “Viral hijacking of the TENT4-ZCCHC14 complex protects viral
RNAs via mixed tailing.” Nature structural & molecular biology *equal contributions

3. Lee YS, Krishnan A, Oughtred R, Rust R, Chang CS, Ryu J, Kristensen VN, Dolinski K,
Theesfeld CL and Troyanskaya OG (2019) "A Computational Framework for Genome-wide

Characterization of the Human Disease Landscape." Ce// systems 8 (2), 152-162. €6

4. Lee YS, Wong AK, Tadych A, Hartmann BM, Park CY, Delesus VA, Ramos |, Zaslavsky E,
Sealfon SC and Troyanskaya OG (2018) "Interpretation of an individual functional genomics
experiment guided by massive public data." Nature methods 15 (12), 1049

5. Lim J*, Kim D* Lee YS* Ha M, Lee M, Yeo J, Chang H, Song J, Ahn K and Kim VN (2018)
"Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation." Science 361
(6403), 701-704, *equal contributions
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Lecture outline

* First generation high-throughput technology

* Bayesian methodology

* Cromwell’s rule

» Laplace’s Rule of Succession

* Pseudocount

» Graphical representation of probabilistic modeling
* Bayesian data integration

» Other examples in bioinformatics
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First-generation high-throughput biotechnology
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Growth of “gene chip” industry and massive bio-data generation

Root tissue Leaf tissue
6 7 8 9 10 11 12 ¢ 5 6 7 8 9 10 11 12

o
1:10,000

One of the first gene chips
Mark Schena et al (1995); Cited by 13,441

young.kaist.ac.kr

How to manage, handle, and ultimately interpret this bio big data?

National Center for Toxicological Research
scientist reviews microarray data

young.kaist.ac.kr




Accumulation of rich and genome-wide data

Growth of DNA Sequencing
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Worldwide Annual Sequencing Capacity
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We now have over 2 Million Human Genomes!
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Challenge in bio-data interpretation

“We have these giant piles of data and no way to
connect them. I’'m sitting in front of a pile of data that

we've been trying to analyze for the last year and a half.”
H. Steven Wiley, biologist at the Pacific Northwest National Laboratory

young.kaist.ac.kr 9

Lecture outline

* Bayesian methodology

young.kaist.ac.kr 10
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Bayesian methodology in bicinformatics

Balch-and et ren,,
sample- «%)

specific
covariates

Cellype |

Examples of specialized bio-algorithms for gene quantification
from RNA-seq and cell-type assignment from scRNA-seq

varicator

Cell
specific

size A
factors

Negative
wusses  DiNOMial
dispersion as radial

basis function of

G the mean
Variable D Description
Yog Negative bionomial  Single-cell count
5, None Cell size factor
z Categorical Cell type indicator
Fage D r i
Page Deterministic {* Negative binomial dispersion
B log-normal Marker overexpression
P Nene Marker/cell type matrix
A Nona Covariates (batch or sample)
Fog Gausslan Covariate coefficlents
ab None Dispersion basis coefficients
. Dirichlet Prior probability of cell type

Graphical model used by RSEM
Cited by: 11,735

h, hg etal. 2019 young.kaist.ac.kr

Graphical model used by CellAssign

11

Bayesian approach for data analysis

Likelihood \

P(Data| Parameter) P(Parameter)

P(Parameter|Data) = P(Data)

Posterior j

young.kaist.ac.kr
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Bayesian vs. Frequentist reasoning

Example: Find your phone
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o et al. 2018
young.kaist.ac.kr 13

Bayesian vs. Frequentist reasoning

Example: Coin toss

HHHHHHHHHH...

What is the probability that the next coin toss will return head?

young.kaist.ac.kr 14




Bayesian vs. Frequentist reasoning

Example: Coin toss

HHHHHHHHHH...

n

Likelihood: P(k,n|0) = (k

)6k(1— )"k

young.kaist.ac.kr

Bayesian vs. Frequentist reasoning

Example: Coin toss

HHHHHHHHHH. .

n

Likelihood: P(k,n|8) = (k

) Hk(l _ Q)n—k

Prior. P(0) = Beta(1,1)
Posterior: P(0|k,n) = Beta(1+k,1+n—k)

young.kaist.ac.kr




Bayesian methodology as a generalization of Cromwell’s rule

Cromwell's rule states that we should not use of probabilities of
1 or 0, except when applied to logical statements.

What is the probability that the sun will not rise tomorrow?

ar on Unsplash young.kaist.ac.kr 17

Laplace's law of succession: define random variables

Example: Coin toss
* X; = {the value of the i — th coin toss; head = 1 and tail = 0}
* S, = {the total number of heads} = X; + -+ X,

young.kaist.ac.kr 18




Laplace's law of succession: observations

Example: Coin toss
* X; = {the value of the i — th coin toss; head = 1 and tail = 0}
* S, = {the total number of heads} = X; + -+ X,

HHHHHHHHHH :

e k = {number of heads} = 10
* n = {number of coin toss} = 10

young.kaist.ac.kr 19

Laplace's law of succession: mathematical assumption

Example: Coin toss
* X; = {the value of the i — th coin toss; head = 1 and tail = 0}
* S, = {the total number of heads} = X; + -+ X,

HHHHHHHHHH

* k = {number of heads} = 10
* n = {number of coin toss} = 10

Laplace assumed that p = {probability of heads} can be any real number
between 0 and 1.

What is the probability that the next coin toss is heads?

young.kaist.ac.kr 20
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Laplace's law of succession: mathematical consequence

Example: Coin toss
* X; = {the value of the i — th coin toss; head = 1 and tail = 0}
* S, = {the total number of heads} = X; + -+ X,

HHHHHHHHHH

e k = {number of heads} = 10
* n = {number of coin toss} = 10

Laplace assumed that p = {probability of heads} can be any real number
between 0 and 1.

k+1
PXp41 =1Sy=n) = )
young.kaist.ac.kr 21

Laplace's law of succession: mathematical basis of pseudocount!
Example: Coin toss

* X; = {the value of the i — th coin toss; head = 1 and tail = 0}
* S, = {the total number of heads} = X; + -+ X,

HHHHHHHHHBA
« k = {number of heads} = 10 /‘ Prior
* n = {number of coin toss} = 10

Laplace assumed that p = {probability of heads} can be any real number
between 0 and 1.

k+1 10+1

P(nys = 1S =) =T =552~

What happens if n — «?

young.kaist.ac.kr 22
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Rationale Behind Cromwell’s Rule

“...if a decision maker thinks something cannot be true
and interprets this to mean it has zero probability, he will
never be influenced by any data, which is surely absurd.
So leave a little probability for the moon being made of
green cheese; it can be as small as 1 in a million, but have
it there since otherwise an army of astronauts returning
with samples of the said cheese will leave you unmoved.”
- Dennis Lindley

young.kaist.ac.kr 23

Lecture outline

» Graphical representation of probabilistic modeling

young.kaist.ac.kr 24
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Recall conditional probability

* A={rolling a dice and it’s value is less than 4 }
« B ={rolling a dice and it’s value is an odd number }
PEB A0S -

PEADE

P(B|A) =

young.kaist.ac.kr
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Recall conditional probability

 A={rolling a dice and it’s value is less than 4 }
B ={rolling a dice and it’s value is an odd number }
P(B, A)  #{rollingalor3} 2

P(B|A) = P(A)  #{rollinga1l,2,0r3} 3

A B

young.kaist.ac.kr

26
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Notations for probabilistic graphical models (i.e. Bayesian networks)

O Random variable
@ or Observation
Conditional probability P(B | A)

young.kaist.ac.kr 27

Example of probabilistic graphical models

Given the following probabilistic graphical model, what is the
equivalent factorization of the joint probability?

SPRINKLER RAIN
RAIN| T F T

F 04 06 @ ¢ 02 08
T | 0.01 099

GRASS WET
SPRINKLER RMN‘ T F

F F 0.0 1.0
F T 0.8 0.2
T 5 0.9 0.1
T T 0.99 0.01
P(G,S,R) = ?
young.kaist.ac.kr 28
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Example of probabilistic graphical models

Given the following probabilistic graphical model, what is the
equivalent factorization of the joint probability?

SPRINKLER RAIN
RAIN| T F T F

F 04 06 @ “ 0.2 0.8
T 0.01 0.99

GRASS WET
SPRINKLER RMN‘ T F

0.0 1.0
0.8 0.2
0.9 0.1
0,99 0.01

F F

F T
T F
T T

P(G,S,R) = P(R) - P(S|R) - P(G|S,R)

young.kaist.ac.kr 29

Take-home exercise: reading probabilistic graphical models

Given the following probabilistic graphical model, what is the
equivalent factorization of the joint probability?

P(A,B,C,D) =7

young.kaist.ac.kr 30
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Graphical representation of the coin toss example
Example) coin toss X, Xy, X3
n

P(k,n|6) = (k) ok (1 — @)k !;:-
P(8) = Beta(1,1) G ‘

P(O|k,n) = Beta(1+k,1+n—k)

young.kaist.ac.kr 31

Bayesian data integration for network inference

Training set: GO biological process co-annotated genes
R: Functional relationship

C: Biological context

D: Datasets

Evidence in each dataset

Gene-gene scores

Gene-gene scores

T oyansk 2007;

et al. 2018 young.kaist.ac.kr 32
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Key in understanding the social network of the cell

Each node represents a single gene/protein and the specific
network connections are responsible for each biological process.

Secretion &
y  vesicle

transport

young.kaist.ac.kr

Hierarchical-aware integration of computation and genome-wide experiments

Graphical modeling based on known hierarchical associations
for multi-label classification

LWz . S = —©©

Blood J Blood

Whole body Whole body :
’

Leukocyte Lcukocy(e

L J ®
- | o —O O@
® Monocyte Lymphocyte ® Monocytc LY"“P’W‘:Y‘e
T Lymphocyte B Lymphocyte T Lympho:yw B Lymphocyte
Macrophage Macrophage

Hierarchy of tissues and cell-types  Graphical model for tissue and cell-type
classification and prediction

'atcuoglu et aI 2006;
. 200 ark et al. 2010;
t a_l. 2019 young.kaist.ac.kr
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Construct individual classifier for lymphocyte

S82 Sl
_3_‘?...‘ =
¢ 4 \\
{ /AR .
240 . i
Blood b
Whole body
[ L —
Leukocyte
|
Lymphocyte-§p§0|f|c
i signal prediction
Monocyte Lymphocyte
4 I
Macrophage T Lymphocyte B Lymphocyte
young.kaist.ac.kr 35

Construct individual classifier for lymphocyte
WSS -
c;;-‘:“_b?{: =
"':\\
| /AR 3
Blood 5
Whole body
[ L—
Leukocyte
|
O @—O
Monocyte Lymphocyte
; I
Macrophage T Lymphocyte B Lymphocyte
young.kaist.ac.kr 36
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Construct individual classifier for each tissue and cell-type

- 8. -
{/,‘( A "‘ {\ \\ —
< MWL

Blood
WhoIeI body |
1—O
Leukocyte
|
O—0 @—0
Monocyte Lymphocyte
I |
S—0 0—00—0
Macrophage T Lymphocyte B Lymphocyte
young.kaist.ac.kr 37

Model aggregation (Bayesian Correction)
:3 ‘;%5’;
AN

Z{\

Whole body Blood
Leukocyte
Monocyte Lymphocyte

C% |

Macrophage T Lymphocyte B Lymphocyte
young.kaist.ac.kr 38
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Hierarchical-aware prediction via graphical modeling

;S;:Beﬂ-fi;;
S
N AN\
% _ﬁ‘_}{'f
Whole body Blood
Leukocyte
Monocyte Lymphocyte
(m O—0 | O—0
Macrophage T Lymphocyte B Lymphocyte

young.kaist.ac.kr
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Characterization of human diseases: neuroblastoma and melanoma

Most Enriched Pathways for Neuroblastom

phenol containing compound biosynthetic process (10
behavior (143

generation of neurons (413

cognition (45,

leukocyte migration (201)

neurogenesis (429)

neuron projection development (358)

myeloid leukocyte migration (66)

neuron development (374)

positive regulation of leukocyte proliferation (48)

Most Enriched Pathways for Melanoma

pigmentation (25)

developmental pigmentation (14

cellular pigmentation (13

multicellular organismal catabolic process (67

collagen catabolic process (65

collagen metabolic |
t cell chemotaxis (12)

multicellular organismal macromolecule metabolic process (82) -
extracellular matrix disassembly (120;

glucosamine containing compound metabolic process (11

young.kaist.ac.kr

40
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Tissue-specificity of human complex diseases

Bipartite graph of human tissues and complex diseases related to
T-cells and B-cells

Muscles (75)

Muscle, Skeletal (145)
Muscle Fibers, Skeletal (34)

Sarcomeres (41)
Muscle Fibers, Fast-Twitch (12)

Jurkat Cells (190)

Lymph Nodes (22)

Epidermis (73) Leukocytes, Mononuclear (51)

Intestinal Mucosa (42)

Intestines (33)

Sputum (12)

Intestine, Small (17)
Neutrophils (97)

Killer Cells, Natural (113]
CD4-Positive T-Lymphocytes : didieel
Dendritic Cells (128) (116)

CD8-Positive T-
(76)

Desmosomes (33)

T-Lymphocyte Subsets (66) Skin (62)

T-Lymphocytes, Helper-Inducer
29)

Parotid Gland (15)

T-lymphocytes, Regulatory (31)
saliva (31)

Plasma Cells (13)

Submandibular Gland (13)

young.kaist.ac.kr
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Take-home exercise: what is the equivalent factorization?

Whole body Blood

=" |

Leukocyte

1

Monocyte Lymphocyte

-0 O0—0 O-O

Macrophage T Lymphocyte B Lymphocyte

young.kaist.ac.kr
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The directed graphical model used by RSEM

How to “read” these graphical models?

young.kaist.ac.kr 43

Read through the mathematical notations!

transcript probabilities (expression levels) —* 6

number of reads —— |

transcript— |

fragment length

start position
p \

read length

orientation |

paired read

quality scores

read sequenC\

N
P(g, f: s.o0./. q, rlg) = H P(gnle)P(fn |g‘n)P(sn|fm gn)P(on lgn)P((In)P(fnlfn )P(7'1| |gn- fne By 0ns bais (In)

n=1

young.kaist.ac.kr 44
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Now, what does this graphical modal say about RSEM?

transcript probabilities (expression levels) —* 6

number of reads —— |

transcript—— |

fragment length

start position
p S ——

read length

orientation .

paired read

quality scores

read sequenC\

AI
P(g.f.s,0.0.q,r|0) = H P(gn|@)P(fr|gn)P(sn|fn. gn)P(0n|gn) P(qn)P(lnlfr)P(rnlgn. fr. Sn: 0n, tns qn)

n=1

young.kaist.ac.kr 45

Balch-and Cell type-
sample- v specific
specific , increase in
covariates 7 marker gene
Cell-type
varicator
Cell
size @
factors
| N_egaﬂ_ve
. R e P
basis function of
R the mean
Variable D Descripti
Ve Megative bionomial  Single-cell count
ER None Cell size factor
Z, Categorical Cell type indicator
Hoge o inistic 1 PP en ge exp
#rpe  Deterministict” ive bi
B log-normal Marker overexpression
P None Marker/cell type matrix
£ MNone Covariates (batch or sample)
Py G coefficients
ab Mone Dispersion basis coefficients
x Dirichlet Prior probability of cell type

Can you write down the factorization
for the graphical model used by CellAssign?

young.kaist.ac.kr 46
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Data generation is no longer the rate limiting factor

Cost per Human Genome

$10,000,000

Moore’s Law

$1,000,000

$10,000

\
National Human Genome
Research Institute

$1,000

genome.gov/sequencingcosts

2004 2005 2006 Z 200 2008 201 201 2012 2013 2014 2015 2016

Cost per genome data - 2021

young.kaist.ac.kr
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Repbcaton
Transtaton
Transeripton
Genome
organizaton
Genome
sequencing
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Take home message

Key in data interpretation is in handling data uncertainty!

“...if a decision maker thinks something cannot be true
and interprets this to mean it has zero probability, he will
never be influenced by any data, which is surely absurd.
So leave a little probability for the moon being made of
green cheese; it can be as small as 1 in a million, but have
it there since otherwise an army of astronauts returning
with samples of the said cheese will leave you unmoved.”
- Dennis Lindley

young.kaist.ac.kr 49
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Join me for the online Q&A session!
Young-suk Lee (O] )

KAIST

Assistant Professor

Department of Bio and Brain Engineering,

Korea Advanced Institute of Science and Technology (KAIST)
Email: youngl@kaist.ac.kr

Web: young.kaist.ac.kr
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