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Drug discovery and development -
Pharmacogenomics and beyond
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Curriculum Vitae

Speaker Name: Hojung Nam, Ph.D.

» Personal Info

Name Hojung Nam
Title Professor
Affiliation Gwangju Institute of Science and Technology (GIST)

P Contact Information
Address 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005,
Republic of Korea

Email hjnam@gist.ac.kr
Phone Number  062-715-2641

Research Interest

Bioinformatics, Systems Biology, Cheminformatics, Machine learning

Educational Experience

2001 B.S. in Computer Science, Sogang Univ., Seoul, Korea.
2003 M.S. in Computer Science, KAIST, Daejeon, Korea.
2009 Ph.D. in Bio and Brain Engineering, KAIST, Daejeon, Korea.

Professional Experience

2009-2013 Postdoctoral Researcher, Bioengineering, University of California, San Diego, CA USA
2013-2018 Assistant Professor, Gwangju Institute of Science and Technology (GIST)
2018-2023 Associate Professor, Gwangju Institute of Science and Technology (GIST)

2023- Professor, Gwangju Institute of Science and Technology (GIST)

Selected Publications (5 maximum)

1.

Bongsung Bae, Haelee Bae, Hojung Nam* “LOGICS: Learning optimal generative distribution

for designing de novo chemical structures”, Journal of Cheminformatics 2023 Sep 7;15(1):77.

. Haelee Bae, Hojung Nam*, "GraphATT-DTA: attention-based novel representation of interaction

to predict drug-target binding affinity", Biomedicines 2023, 11(1), 67.

. Hansol Lee, Songyeon Lee, Ingoo Lee, Hojung Nam* "AMP-BERT: Prediction of Antimicrobial

Peptide Function Based on a BERT Model", Protein Science, 2022 Dec 3;e4529. doi: 10.1002/
pro.4529.

. Koon Mook Kang§, Ingoo Lee§, Hojung Nam* Yong-Chul Kim* "Al-Based Prediction of New

Binding Site and Virtual Screening for the Discovery of Novel P2X3 Receptor Antagonists”,
European Journal of Medicinal Chemistry, 2022 Jul 1;240:114556.

. Hyunho Kim, Minsu Park, Ingoo Lee, Hojung Nam?* “BayeshERG: A Robust, Reliable, and

Interpretable Deep Learning Model for Predicting hERG Channel Blockers", Briefings in
Bioinformatics 2022 Jun 17;bbac211. doi: 10.1093/bib/bbac211.
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INTRODUCTION TO
PHARMACOGENOMICS
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Pharmacogenomic

" The term pharmacogenetics was coined in the 1950s and
captures the idea that large effect size DNA variants contribute
importantly to variable drug actions in an individual (single
gene-drug).

" The term pharmacogenomics is now used by many to describe
the idea that multiple variants across the genome that can
differ across populations affect drug response. The
International Conference on Harmonisation, a worldwide
consortium of regulatory agencies, has defined
pharmacogenomics as the study of variations of DNA and
RNA characteristics as related to drug response.

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.
OB E=eearas




profiling

Patients with same condition

No response

Look for genetic variants that affect drug response used to treat the
condition. The analysis will yield results that allow physicians to

determine if their patient will have a positive response to the drug
treatment.

[National Human Genome Research Institute]

Pharmacogenomics Adds Precision to the Practice of Medicine, June 15, 2015 (Vol. 35, No. 12)

https://www.genengnews.com/magazine/249/pharmacogenomics-adds-precision-to-the-practice-of-medicine/

Current Medicine 24
One Treatment Fits All CrownBio

CONNECTING SCIENCE TOPATENTS

/ ll ' ' l' Effect
No effect
Therapy
Cancer patients with w h

e.g. colon cancer

Adverse effects

Future Medicine
More Personalized Diagnostics

7[5~ “@ «
\'ET 'Y 1‘*‘ o ==
s n.n.,““:[mjw, [ ™ 1o i

https://blog.crownbio.com/pdx-personalized-medicine#_
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Drug discovery and development

Drug Pre-
................................... discovery | sl [ E——

Target Hit Lead
discovery screening optimization 4 clinical
High throughput

Efficacy
Animal studies .
100~200 patients
Literature study 3D Modeling Safety / PK Efficacy
KO/KD test SAR/QSAR 50~150 patients 500~5000 patients
ADME/PK

screening

ol . ANCH 24 H S}
P ke !

Pharmacogenomics in
drug discovery and development

Drug Pre-
................................... discovery | dinical

Target Hit Lead
discovery screening optimization

A clinical

Suggest best candidates Suggest best trial case

Target discovery
w/ variations

ADME/T

(CYP450)

Drug
repositioning

Patients stratification

Interactions w/
variations
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Example 1 -
TPMT

Pharmacogenetics in
Oncology

®  The thiopurine S-methyltransferase (TPMT) is a
metabolizer of chemotherapeutic agents 6MP
and azothiopurine (used mainly in blood-based
malignancies)

®  TPMT deficiency leads to severe toxicity
associated with treatment (potential mortality)

TPMT function

—>

Azathioprine or
6-mercaptopurine ——p
dose

—>

Normal function Expected drug

effect

Decreased function Risk of
| haematological

toxicity

>

High risk of
haematological

No function

toxicity

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.
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Example 2 -
CYP2D6

_
(Morphine 3 gucuronide )
_Oodom-s—glucumidn .@
Normorphine

Codeine dose

Cytochrome P450 2D6 (CYP2D6) is an enzyme that in
humans is encoded by the CYP2D6 gene. CYP2D6 is
primarily expressed in the liver.

In particular, CYP2D6 is responsible for the metabolism
and elimination of approximately 25% of clinically used
drugs, via the addition or removal of certain functional
groups — specifically, hydroxylation, demethylation, and
dealkylation. CYP2D6 also activates some prodrugs.

CYP2D6 function
Increased function

Active drug concentration

High morphine
S 9 T
concentration
Normal function Expected morphine
- X
concentration
T Decreased function Lower morphine
> b P
concentration
No function
—> No morphine

Dan M Roden et al., Lancet . 2019 Aug 10;394(10197):521-532.
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— Representations of proteins, chemicals
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— Studies related to pharmacogenomics based on machine learning
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Single-nucleotide polymorphism

From Wikipedia, the free encyclopedia

references. October 20712) (Leamn how and when to remove this template message)

A single-nucleotide polymorphism, often abbreviated to SNP (/snip/; plural

nuclectide that occurs at a specific position in the genome, where each variation is present to some

/). is a variation in a single

appreciable degree within a population (e.g. = 19%).1]

For example, at a specific base position in the human genome, the C nucleotide may appear in most
individuals, but in a minerity of individuals, the position is cccupied by an A, This means that there is a SNP at
this specific position, and the two possible nucleotide variations — C or A — are said to be alleles for this
position.

SMNPs underlie differences in our susceptibility to disease; a wide range of human diseases, e.g. sickle-cell
anemia, P-thalassemia and cystic fibrosis result from SNPs.[2IEI4 The severity of iliness and the way the body
responds to treatments are also manifestations of genetic variations. For example, a single-base mutation in
the APOE (apolipoprotein E) gene is associated with a lower risk for Alzheimer's disease.l”!

A single-nucleotide variant (SNV) is a variation in a single nucleotide without any limitations of frequency and
may arise in somatic cells. A somatic single-nucleotide variation (e.g., caused by cancer) may also be called a
single-nucleotide alteration.

https://en.wikipedia.org/wiki/Single-nucleotide_polymorphism

L Cpj a3unyts)

Korean Society for Bioinformatics

)

This article's use of external links may not follow Wikipedia's policies or guidelines. Flease improve this article by
removing excessive or inappropriate external links, and converting useful links where appropriate into footnote

The upper DNA molecule differs from the lower 7
DMA molecule at a single base-pair location (a C/A
polymorphism)

12




NCBI dbSNP

| Resources

dbSNP sNP +][eyp2de Bl scarch

Create alert  Advanced Help
Clinical Display Settings: ~ Summary, 20 per page, Sorted by SNP_ID Sendto:~  Filters: Manage Filters
Significance
benign Find related data =
drug response Search results ey =
likely benign Database:
e Items: 1 to 20 of 3318 Page El of 166 Next= | last=>
Validation Status
by-ALFA O rs16947 [Homo sapiens]
by-cluster 1.
by-frequency Variant type: SNV Search details s

— Alleles: G=AT  [Show Flanks] >
Rabiication Chromosame 224127941 (GRCh38) cyp2dGlAll Fialds]
Litver Anniotiled 22:42523943 (GRCh3T)
F il i Canonical SPDI: NC_000022.11:42127940:G:A NC_000022. 11:42127940.G:T
RUBNIES Rt Gene: CYP2D6 (Varview) D
Function Class Fulnld‘ron?I Qunsequence: i?oding_st?quencel!_\rariant‘mlssense_variam —
inframe deletion Clinical significance: likely-benign,benign,drug-response | Search | See more...
iitame fdd Validated: by frequency.by alfa.by cluster e —
EaTSEBon MAF: A=0.366535/4092 (ALFA)
intron A=0.255618/91 (PharmGKE) — =
ot A=0.376465/47272 (TOPMED) Recent activity
e NC_000022.11:0.42127941G>A, NC_000022 11:0.42127941G>T, Turn OFf Clear
9 B NG_008376.4:0.7870C>T, NG_008376.4:0.7870C>A, NG_008376.3:0.7051C>T,
SIS NG_008376.3:9.7051C>A, NM_000106.6:c 886C>T, NM_000106.6:c.886C>A, Q cyp2de (3318) -
i iy P s ol ol S e, BRSSO
del See more...
delins
ins
lens,
mnv P Jil
Annotation SNV
A ——

https://www.ncbi.nIm.nih.gov/snp/?term=cyp2d6

L CpjeRuanuss 13
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3 Reso ow To Sign in 1o NCBI
-
<NCBI [Ai Databases ]
Natonal Centar for
Biotechnology
Neaidome  Welcome to NCBI Popular Resources
Resource List (A-2) The National Center for Blotechnology Information advances science and health by providing access to PubMed
All Resources biomedical and genomic information. Bookshelf
Chemicals & Bioassays About the NCBI | Mission | Qrganization | NCBI News & Blog PubMead Central
Data & Software BLAST
DNAS RNA Submit Download Learn Nucleotide
Domains & Structures Deposit data or manuscripts Transfer NCBI data to your Find halp documents, attend a Genome
Oenes h Eranion into NCBI databases computar class or walch a Wutorial SNP
Genetics & Medicine — - Gene
Genomes & Maps ,@ % wu Protein

PubChem
Homology | AN | o
Literature.
Proteins NCBI News & Blog
Sequence Analysis Develop Analyze Research Allele Frequency Aggregator (ALFA)
S Release 2 is available!

Use NCBI AP1s and code Identify an NCBI tool for your Explore NCBI research and
Training & Tutorials libraries 1o bulld applications data analysis task collaborative projects
Variation —al Ll
B | 4 NCBI on YouTube RAPT and BLAST+
u 7 P on the Cloud. SARS-CoV-2 genome data
= 2 =) in Datasels
RafSeq release 204 is now avallable
14 Jan
More.

You are hare: NCB! > National Center for Biotechnology Information Supporn Center
cevic cranten oEcrmree oaou Ao ceanoen e E noAeA TN
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gnomAD

g mAD browser About Downloads Terms Contact Jobs FAQ

gnomAD
NTVYY

genome aggregation database

Search by gene, region, or variant

Examples - Gene: PCSK9, Variant: 1-55516888-G-GA

The Genome Aggregation Database (gnomAD) is a resource developed by an intenational coalition
of investigators, with the goal of aggregating and harmonizing both exome and genome sequencing
data from a wide variety of large-scale sequencing projects, and making summary data available for
the wider scientific community.

The data set provided on this website spans 125,748 exome sequences and 15,708 whole-genome
sequences from unrelated individuals sequenced as part of various disease-specific and population
genetic studies. The gnomAD Principal Investigators and groups that have contributed data to the
current release are listed here.

All data here are released for the benefit of the wider biomedical community, without restriction on
use - see the terms of use here. Sign up for our mailing list for future release announcements here.

https://gnomad.broadinstitute.org/
15
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¥
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gnomAD browser 11 About News Downloads Terms Publications Contact

gnoOmAD
afftdi G e

genome aggregation database
gnomAD v2.1.1 ~

Please note that gnomAD v2.1.1 and v3.1 have substantially different but overlapping sample
compositions and are on different genome builds. For more information, see the FAQ

Examples - Gene: PCSKS, Variant: 1

The G jat ) (gnomAD) is a resource developed by an international coalition
of investigators, with the goal of aggregating and harmonizing both exome and genome
sequencing data from a wide variety of large-scale sequencing projects, and making summary data
available for the wider scientific community.

The v2 data set (GRCh37/hg19) provided on this website spans 125,748 exome sequences and
15,708 whole-genome sequences from unrelated individuals sequenced as part of various disease
specific and population genetic studies. The v3.1 data set (GRCh38) spans 76,156 genomes, selected
as in v2. The gnomAD Principal Investigators and groups that have contributed data to the current

https://gnomad.broadinstitute.org/ 16
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https://www.pharmvar.org/htdocs/ar
chive/index_original.htm

Ta* T B ANDY A 5 Bk
§aSBiEREYRa

The Human Cytochrome P450 (CYP)
Allele Nomenclature Database

Allele nomenclature for Cytochrome P450 enzymes

New List: CYP allele frequencies from 56,945 unrelated individuals
of five major human populations

Inclusion criteria - New criteria regarding variants identified by NGS

IRAMP_calculator of contribution of rare variants.
Cytochrome P450 Oxidoreductase. POR

CYP1 family:
CYPIAI; CYPIA2; CYPIBI

CYP?2 family:
CYP246; CYP2413; CYP2B6; CYP2CS8; CYP2C9; CYP2C19;
CYP2Do; CYP2EI; CYP2FI; CYP2J2; CYP2RI; CYP2S1; CYP2W1

CYP3 family:
CYP344; CYP345; CYP3A7; CYP3A443

CYP4 family:
CYP4AILL; CYP4A422; CYP4B1; CYP4F2

CYP=4 families:
CYPSAI; CYPS8AI; CYPI9AI; CYP2142; CYP2641

SNP information on CYP17A1 can be found here

@ Human Cyt: e P4 X <+

€ 2 C (0 & pharmvarorg/htdocs/archive/index_ongmalhtm

* e =06co0ocBREREENCE »»=@Q:

The Human Cytochrome P450 (CYP)
Allele Nomenclature Database

Allele nomenclature for Cytochrome P450 enzymes

New List: CYP allele frequencies from 56.945 unrelated individuals

of five major human populations

Inclusion criteria - New criteria regarding variants identified by NGS

iRAMP_calculator of contribution of rare variants.

Cytochrome P450 Oxidoreductase: POR

CYP1 family:
CYPIAL: CYPIA2; CYPIBI
CYP?2 family:

CYP246; CYP2A13; CYP2B6; CYP2CS; CYP2C9; CYP2C19;

CYP2D6: CYP2EI: CYP2F1; CYP2J2; CYP2RI; CYP2S1; CYP2WI

CYP3 family:
CYP3A44; CYP3AS; CYP347; CYP3443

CYPA family:
CYP4A41l: CYP4422; CYP4B1; CYP4F2

CYP=>4 families:

CYPSAI: CYP8AI: CYP19AI: CYP2142: CYP26A41

E’SSB| EE'%!%"SEE’EI https://www.pharmvar.org/htdocs/archive/index_original.htm
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The Human CYP Allele
Nomenclature Database

PharmVar

PharmVar

L1

\ 4

http://www.cypalleles.ki.se/

§25Bi

BB Y
Ko

wan Sockety for Boinformatics

' 2 PharmGKB

After more than 15 years the Human Cytochrome

P450 (CYP) Allele Nomenclature Database has transitioned...

...to the Pharmacogene Variation (PharmVar) Consortium at www.PharmVar.org

PharmVar will serve as a central repository for pharmacogene variation to facilitate

allele (haplotype) designation and the interpretation of pharmacogenetic test results to guide precision medicine

PharmVar is a PGRN resource funded by NIGMS.

After September 26, 2017, please visit www.PharmVar.org to access content of the original
P450 Nomenclature Database

PV PharmVa x

+

C (0 & pharmvarorg

PharmVar

Pharmocogene Variation Consortium

&

QS!E,G&DLOGIQGG\&E-QOE
HOME  ABOUT GENES SUBMISSIONS MEMBERS RESOURCES CONTACT LOGIN
PVID Lookup Q)

Pharmacogene Variation Consortium

PharmVar 4

The Pharmacogene Variation (PharmVar) Consortium is a central repository for
pharmacogene (PGx) variation that focuses on haplotype structure and allelic variation.

The information in this resource facilitates basic and clinical research as well as the
interpretation of pharmacogenetic test results to guide precision medicine

o PharmVar API Services are now available for third party use. For more information, visit the AP| Service Documentation Page

W Follow us on Twitter

PharmVar Publications

Articles

https://www.pharmvar.org/
* " S A A B 5
§aSBi g3 eaY=as

wan Society for Bioinformatics

by Ph are on the resources page.

Original content from the cypalleles.ki.se site is available through the archive

20
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PHARMGKB

e
\g PHARMGKB| Publications News Downloads Contact @ Help

Search PharmGKB Q

Search for a molecule, gene, variant, or combination

Therapeutic Resource for COVID-19

PharmGKB data are under a Creative Commons license. More details are in our Data Usage
Policy. Please cite PharmGK8 if you use our information or images.

Drug Label Clinical Guideline Curated Annotated
Annotations Annotations Pathways Drugs

g 780" 165" 17 151" B 709°

https://www.pharmgkb.org/

L CpjaRugnay

Korean Sacety for Bioinformatics

k$ Pharmaxs x -
€ 5 C 0 @& phamgkborg Aax g@pec=0DcocBERCEDNSR»~»Q:
)
§ PHARMGKB Publications News Downloads Contact @ Help
Search PharmGKB Q
Search for a molecule, gene, variant, or combination
PharmGKB data are under a Creative Commons license. More details are in our Data Usage Policy.
[ Please cite PharmGKB if you use our information or images.
Drug Label Clinical Guideline Curated Annotated
Annotations Annotations Pathways Drugs
:'5 70N f “ - g 1 s N -
B 780 165 17 15 @ 709
? P
https://www.pharmgkb.org/
1 : = o2 KB
§aSBigzezas
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Table 2. Resources for pan-cancer penomics profiles and tools

Resource Data type Profiling  Sample size Description Link References
platform
Resources for pan-cancer =
TOGA (The Cancer  Clin, CNA, GEX,  Micoarray, ~11 300 Mostly primary tumors of 33 Individual cancers:  [150]
Genome Atlas) Methyl, miEx,  NGS cancers https://portal gdc
o o SNV cancergov’
genomics profiles and tools e cnce
data: https://gdc.
cancer.gow’
node/ons’
Also dewnloadable
by an
R/Bioconductor
age
TCGAbickinks [41]
MET500 CNA, SNV NGS 500 Metastatic tumars of 30 ‘hitps:/fmetsoo.path.  [43]
CENCErs med umich adw
Pediatric cancers
TARGET clin, GEX, miEX. NGS ~3200 (according & pediatric cancers (according  httpsyfportal pde. [44]
(Therapeutically SNV tothe GDCData  to the GDC Data Fortal cancer.gov/
Applicable Portal accessed  acressed in May 2018) Also downloaded
Research to in May 2018) byan
Generate Effective R/Bioconductor
Treatments) package
TCGAbickinks [41]
PedPancCan SNV NGS 961 24 pediatric cancers ‘httpfwrww. [45]
{Pediatric pedpancan.com
Pan-Cancer study)
‘Cancer cell lines
CCLE (Cancer Cell CNA, GEX, RFFA, Microarray, ~1500 ‘https./portals. [15,151]
Line Encyclopedia) SNV NGS broadinstitute org!
ccle
Also arcessible
through the Cancer
Dependency Map
{DepMap): httpe://
depmap.org/portal’
Curations
ICGC (international  Clin, CNA, GEX, Curation  ~24 000 Curation of 80+ intemational  httpJficgcorg/ [46]
Cancer Genome Methyl, miEx, «cancer projects, induding
Consortium) SNV TCGA and TARGET
COSMIC (Catzlogue  CMNA, SNV Curation Summarization of https:/fcancer. 28]
of Somatic cancer-related mutations sangeracs
Mutations in across 32 000+ tumors and cosmic
Cancer) cancer cells curated from
25 000 papers
Pan-cancer data visualization
TumaorMap 2D maps Curation \ﬁsuzllmtlun of TOGA, TARGET, https/ftumormap.  [47]
ucsc.edu’
Gene signatures and hmlngu:al pathways
MsigDE (Molecular Curation  ~17 800 gene sets Genes sets of cytobands, ‘httpifsoftaare. [52-54]
Signatures curations, motifs, broadinstitute org’
Database computation, Gene gsea/msigdb/index.
Ontologies, oncogenic sp
signatures and immunclogy
Fathway Commons ~ Biological Curation 4000+ pathways  Collection of biological hittps:/fwww. [152]
pathways pathways from 20+ pathwaycommons
databases, induding KEGG ~ arg
and Reactome
NDEx [Network Data Biological Curation Interactive database that www.ndexbioorg  [153]
Exchange) networks allows users to query,
visualize, upload, share and
. . . . . distribute biological networks
Brief Bioinform . 2020 Dec 1;21(6):2066- Moeral ties
GEX NGS ~11 700 Expression profiles of 53 https:/fgtexportal  [154,155]
1 1 Genotype-Tissus non-di tissues across  org'home/
2083. doi: 10.1093/bib/bbz144. e o canpe
usad as normal contrals for
cancer studies
= }q- g oA Eﬁiil
I Movaa odkits Fr m__;:a__,” Clin, clinical data; CNA, copy mumber alteration: CEX. g Methyl, mikX, miBhA NS, next- g RPPA, reverse

phase pratein array; SNV, single nucleotide variant.

NCBI PubChem

Na‘tmndl Library of Mex
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Submit Contact
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Blog

Explore Chemistry

mical information from authorita

Drawe Structure Upload 1D List Browse Datn Periadic Table

https://pubchem.ncbi.nlm.nih.gov/

R
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m) National Library of Medicine

National Center for Biotechnology Information

Pub@hem About Blog Submit Contact

Explore Chemistry

Quickly find chemical information from authoritative sources
Browse X

Try aspirin EGFR CIHBO4 §7-27-2 C1=CC=C(C=CI)C=0 0/c1-3(2)4/M1-2H3

0

Ty L% E=

Draw Structure Upload ID List Browse Data

DrugBank

C:)RUG BANK Browse ~ CoVID-19 Search ~

WHAT ARE YOU LOOKING FOR?

hﬂenol
e Drugs -'e Targets i Q Pathways

@RUGBANK

DrugBank is a pharmaceutical knowledge base that is enabling
major advances across the data-driven medicine industry.

The knowledge base consists of proprietary authored content describing clinical level information about
1 as chemical

side effects and drug interactions, as well as molecular level data suc

drugs such a

structures and what proteins a drug interacts with. DrugBank offers a suite of products powered by the

i has customers located around the world crossing multiple in es including

nent and regulatory

DrugBank Platform ar
precision medicine, electronic health records, drug develoy

s. DrugBank also
used by millions of

resource for academic research and
researchers every year.

prov

rugBank Online as a free-to-

pharmacists, pharmacologists, health professionals and pharmace

CDI'L‘gEar'.k for Commercial Use ;) ({ te DrugBank ({‘,) ( About DrugBank > )

e O B H L) https://go.drugbank.com/

oy
i Korean Society for Bioinformatics

Downloads Commercial D:
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@RUGBANK

# go.drugbank.com * S 0e

CoVID-19 Search ~

WHAT ARE YOU LOOKING FOR?
Aspirin

o Orugs o Targets @ Pathways o Indications

@RUGBANK

DrugBank is a pharmaceutical knowledge base that is enabling
major advances across the data-driven medicine industry.

¢oSBiE=dBYRa https://go.drugbank.com/

<
L=

Downloads

QO ¢

ococoeBRENO@

Commercial Data ~

- »0

Genomics of Drug Sensitivity in Cancer (GDSC

Genomics of Drug Sensitivity in

Cancer

Compounds

Downloads

Genomics of Drug Sensitivity in Cancer

We have characterised 1000 human cancer cell lines and screened them with 100s of compounds.
0On this website, you will find drug response data and genomic markers of sensitivity.

Search by drug, gene or cell line name

e.g. Docetaxel, RP-56976, BRAF, COLO-829

Overview
Coverage
518 compounds targeting 24 pathways 1%
Other, kinasss -
Browse

Compounds

2.

.‘30.; SBI = dyYLoe https://www.cancerrxgene.org/

What's new?

Release 8.3 (June 2020)

The functionality of the Genomics of Drug
Sensitivity in Cancer database has now
been enhanced with two new data
visualisations. The Combined Analyses
Volcano Plot overlays all tissue specific and
pan-cancer associations ta visualize
significant biomarker associations across all
context-specific ANOVA analyses. Compare
compound plots the correlation of dose
response results (IC50 or AUC ) between
different drugs across the cell line set.

Datasets
GDSC1 GDSC2
Age
from 2010 to 2015 + NEW
Size
287 Cell lines 809 Cell lines

367 Compounds 198 Compounds

310904 1C50s 135242 IC50s

Assay

Resazurin or Syto60  CellTitreGlo
Duration

72 hours 72 hours

Key Publications

Genomics of Drug Sensitivity in Cancer
(GDSC): a resource for therapeutic
biomarker discovery in cancer cells.
Yang et al., (2013) Nucl. Acids Res. 41
(Database issue): D955 - D961
(PMID:23180760 & )

-14 -
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C @ @ cancerngene.org Q & S B =

Genomics of Drug Sensitivity in
Cancer '

Home Cell Lines About

Downloads Documentation

Genomics of Drug Sensitivity in Cancer

We have characterised 1000 human cancer cell lines and screened them with 100s of compounds.
On this website, you will find drug response data and genomic markers of sensitivity.

Search by drug, gene or cell line name

e.g. Docetaxel, RP-56976, BRAF, COLO-829

Overview

1a* 1 Bl AOI Y - B
F_"C SBI H_EQOOE_lil

Korean Society for Bioinformartics

https://www.cancerrxgene.org/

DcocBEREDIYNGCGE ~»0Q

MASSACHUSETTS

walicome @ GENERAL HOSPITAL
= sanger
« institute

CANCER CENTER

Login ¥

What's new?

Release 8.3 (June 2020)

The functionality of the Genomics of Drug
Sensitivity in Cancer database has now
been enhanced with two new data
visualisations. The Combined Analyses
Volcano Plot overlays all tissue specific and
pan-cancer associations to visualize
significant biomarker associations across all
context-specific ANOVA analyses. Compare
compound plots the correlation of dose
response results (ICS0 or AUC ) between
different drugs across the cell line set.

Datasets
GDSC1 GDSC2
Age
from 2010 to 2015 v NEW
Size

987 Cell lines 809 Cell lines

367 Compounds 198 Compounds

310904 ICS0s 135242 1CS0s

Assay

" lecturel
— Introduction to pharmacogenomics
* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

® Lecture 2

— Studies related to pharmacogenomics based on machine learning

PROTEIN REPRESENTATIONS

1o® CD; SFLAND 2 & 5}
paSBieagEys

Korean Society for Biol atics

- 15 -




Why protein representations are necessary?

Representation of proteins for machine-learning features that fully
captured wide ranges of properties of the target molecule

Types of protein representations

" Protein descriptors
— Amino Acid Composition (AAC) - 20D
— Dipeptide Composition Descriptor - 400D
— Tripeptide Composition Descriptor - 8000D
— Composition, Transition and Distribution (CTD) - 147D

" Protein embedding
— One-hot embedding
— Knowledge graph embedding

o2
o

$aoBi Az Az
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Amino Acid Composition ~AAC (20D)

Amino acid compositions for unfiltered sequences from 38 organisms

o

M B 59 n sw
25 LU

T TR, s SR G NG 1 A A e e R A

a8
.

LELSPELPL 2EEPP PSS PSP LOPEFFEFLFEELFELESE

330 &0 tma 35l i och chu 35p B4G  reQ oma kir PIe 53 550 G0 ple mao mba hsal hvo ath di 30 308 nve dme oM 3pu o G kh o g3 can menw pab hsa

lwww

BMC Research Notes volume 11, Article number: 117 (2018)

%SBI Sl By L83

Karean Society for Biainformutics

Dipeptide (400D) [ Tripeptide (8000D)
Composition

## AR RA NA DA cA EA

## 0.003565062 0.003565062 0.000000000 0.007130125 0.003565062 0.003565062

== QA GA HA IA LA KA

## 0.007130125 0.0071530125 0.001782531 0.003565062 0.001782531 0.001782531

## MA FA PA SA TA WA

## 0.000000000 0.005347594 0.003565062 0.007130125 0.003565062 0.000000000

## YA VA AR RR NR DR

## 0.000000000 0.000000000 0.003565062 0.007130125 0.005347594 0.001782531

== CR ER QR GR HR IR

## 0.005347594 0.005347594 0.000000000 0.007130125 0.001782531 0.003565062
## AAR HAas NAS LA CAan EAA
## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 O.000000000
## qQan GAA HAaA TAA LAA KALN
## 0.001785714 0.000000000 0.000000000 0.000000000 0.000000000 0O.00Q0000000
## MAA FAA PAA SAA TAA was
## 0.000000000 0.000000000 0.000000000 0.001785714 0.000000000 O.000000000
## AL VAA ARA RRA MNRA DRA
## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0O.00Q0000000
## CRA ERA QRA GRA HRA IRA
## 0.000000000 0.000000000 0.000000000 0.001785714 0.000000000 O.000000000
## LRA KRA MRA FRA PRA SRA

## 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000 0.000000000
p 18l HE
& Cpj s aRas

Korean Society for Bisinformatics

-17 -




Composition, Transition and Distribution (CTD),
147D

Sequence M TEITASMVYVY K ELREATGTG A
Sequence Index 1 5 10 15 20
Transformation 3 2 1 3 2 2 2 3 3 1 13 1 1 2 3 2 2 3 2

Index for 1 1 2 {1 | 5
Index for 2 1 2 3 4 5 6 7 8 9 10
Index for 3 1 2 3 4 5

1/2 Transitions
1/3 Transitions
2/3 Transitions

Table 1: Amino acid attributes, and the three-group classification of the 20 amino acids by each attribute

Group 1 Group 2 Group 3
Hydrophobicity Polar Neutral Hydrophobicity

RKEDQN G ASTPHY CLV,ILMFW
Normalized van der Waals 0278 29540 4032-8.08
Volume

GASTPDC NVEQIL LS oE o
Polarity 49-6.2 8.0-9.2 104-13.0

LLEWCMVY PATGS H QREKNED
Polarizability 0-1.08 0.128-0.186 0.218-0.409

GASDT CPNV,EQILL M AR
Charge Positive Neutral Negative

KR C, N,CQGHLLMFPSTWY, D, E
Secondary Structure Helix Strand Coil

EALMAKR vy cwET G.N.P.5D
Solvent Accessibility Buried Exposed Intermediate

ALFECG VW RKQEND M, S P, T, H Y

O e3uy Ly

-
0w Saciety for Biainformatics

https://mran.microsoft.com/snapshot/2017-12-06/web/packages/protr/vignettes/protr.html

Protein descriptors (R 531 E)

&« > C @ 23 colab.research.google.com/drive/1smQsJSVITKs| 7difhyzl co-2eGI96mCCL#scrollTo=6X5A32q5qXQ7 Q Q' Q - L ® e D o o
=~ & BIML.ipynb
CO ¥ axz 222 o @
oY 48 87 NY HEY £7 ERY 2
RAM
— 4+ 3IE 4+ HAE W i - @ Colab Al A

v Protein Descriptor

{x}
(Ozr) 3 o~ g Z
v PyBioMed2 0| &%} protein descriptor
(]
v [ !pip install rdkit-pypi # install rdkit
‘/ [2] !pip install pybel_tools # install pybel
¥ [3] Igit clone https://github.com/gadsbyfly/PyBioMed.qit
%cd PyBioMed
Ipython setup.py install
v Using PyBioMed - AA composition
<>

ORVINN = i - A |
% o import PyBioMed
from PyBioMed.PyProtein import AAComposition

1o® CD; SFLAND 2 & 5}
§aoBi Ry

1 Society for Bioinform,

https://colab.research.google.com/drive/1smQsJSVITKs|7difhyzLco-2eG96mCCL?usp=sharing
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Protein Embedding
(Convert Categorical Data to Numerical Data)

" One-Hot Encoding

0&@%00 CJ&@@
the => |[0(0|0|0 |1
cat => |[1/0/0(0|0
sat => (000|010

" Word embedding

cat => [ 12|01 43| 32

mat => |04 | 25 | 09| 05

on => |21 03|01 o4

{.:SBi B AI DI B 5| https://www.tensorflow.org/text/guide/word_embeddings

Knowledge Graph

" Aknowledge graph is a knowledge base that uses a graph-structured data
model to integrate data.

— entities (such as objects, people, and concepts) are depicted as nodes
— relationships or connections between entities are represented as edges

" Knowledge graphs enable enhanced information retrieval, reasoning, and
knowledge discovery.

LA JOCONDE
A WASHINGTON

o2

§a5Bi 322 JanT1984
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Hetionet (eLife 2017)

* 11 node types (metanodes), 24 edge types (metaedges)

L CpjaRugnay

L
Korean Society for Biainformatics

Hetionet (eLife 2017)

Table 1. Metanodes.

Hetionet v1.0 includes 11 node types (metanodes). For each metanode, this table shows the abbrevia-
tion, number of nodes, number of nodes without any edges, and the number of metaedges connect-
ing the metanode.

Metanode Abbr Nodes Disconnected Metaedges
Anatomy A 402 2 4
Biological process BP 11,381 0 1
Cellular component cc 1391 0 1
Compound C 1552 14 8
Disease D 137 1 8
Gene G 20,945 1800 16
Molecular function MF 2884 0 1
Pathway PW 1822 0 1
Pharmacologic class PG 345 0 1
Side effect SE 5734 33 1
Symptom S 438 23 1

¢ Cpj Ry Las

e
Korean Society for Bisinformatics
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Table 2. Metaedges.

Hetionet v1.0 contains 24 edge types (metaedges). For each metaedge, the table reports the abbrevi-
ation, the number of edges, the number of source nodes connected by the edges, and the number
of target nodes connected by the edges. Note that all metaedges besides Gene—regulates—Gene
are undirected.

Metaedge Abbr Edges Sources Targets
Anatomy-downregulates-Gene AdG 102,240 36 15,097
Anatomy-expresses—Gene AeG 526,407 24 18,094
Anatomy-upregulates-Gene AuG 97,848 36 15,929
Compound-binds-Gene CbG 11,571 1389 1689
Compound-causes-Side Effect CcSE 138,944 1071 5701
Compound-downregulates-Gene CdG 21,102 734 2880
Compound-palliates-Disease CpD 390 221 50
Compound-resembles-Compound CrC 46486 1042 1054
Compound-treats-Disease CtD 755 387 77
Compound-upregulates-Gene CuG 18,756 703 3247
Disease-associates—Gene DaG 12,623 134 5392
Disease-downregulates-Gene DdG 7623 44 5745
Disease-localizes-Anatomy DIA 3602 133 398
Disease—presents-Symptom DpS 3357 133 1415
Disease-resembles-Disease orD 543 12 106
Disease-upregulates-Gene DuG 773 44 5630
Gene-covaries-Gene GcG 61,690 2043 9532
Gene-interacts-Gene GiG 147,164 9526 14,084
Gene-participates-Biological Process GpBP 559,504 14,772 11,381
Gene-participates—Cellular Component GpCC 73,566 10,580 1391
Gene-participates-Molecular Function GpMF 97,222 13,063 2884
Gene-participates—Pathway GpPW 84,372 8979 1822
™ Gene—regulates—Gene Gr>G 265,672 4634 7048
Sa SB' "h:"' Pharmacologic Class-includes-Compound PCiC 1029 345 724

Knowledge Graph Embedding (KGE)

" A Knowledge graph embedding (KGE) is a representation of a
KG element into a continuous vector space.

The primary objective is to ensure that these embeddings capture the
semantics and relations such that similar or related entities/relations
are closer in the embedding space.

Liverpool
Acme Inc 2
O /O TisAy T
N\ bornln O Acine Ine Liverpool
® Cit
worksFor basedIn City ° Eloxe .
i i ® iverpoo
worksFor likes iSA :> o ;ﬂm .L i
2 Liverpool FC Y
/ friendWith Mike P Football Team & mavin
worksFor s
O o 3
George 4 4 bornin @ likes .basedln "
Person L4

Image adapted from https://towardsdatascience.com/knowledge-graph-embeddings-101-2cclca5db44f
53|

§aSBj ¥=dE?
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Knowledge Graph Embedding (KGE)

'(a) Matrix Factorization

K ledge Graph Node Embedding S
nowledge Grap SR o N e Embedding Space
') Tvanstationsi Distance Models | 80
| (b) Translational Distance Models | ’
, e — o |
' @
I
|:>. h + r =t .L_-f1> ® ®
. | o
i = 5 » w ., ;wms o5 w = us
, (€) Neural Network Models ! ® [ J >
® I
I Q o | Low Dimensional
(] (<] .
I ) ° e I Representation
| QX X0 |
I — © © |
I (] © |
L Node2vec Autoencoder

- e v (T T b ) T | T, .

Nicholson et. al., Comput Struct Biotechnology J 18, 1414-1428 (2020)

Ts* . ANCH 24 H S}
¢oSBiERdaRay

Translational Models

® TransE :

— If two entities are related by a specific relationship, the embedding of
one entity plus the embedding of the relationship should be close to
the embedding of the second entity.

— For a given triple (h,r,t) (where /Zis the head entity, r is the relation, and
t is the tail entity), the relationship is modeled as: h +r =t

Co, i TransE A
U \ 2
] L.
3 \ke
§ (book)
£ 5\8’\95 (pe0p|9)
e
TransE has difficulty modeling
1-N, N-1, and N-N
.SBI QQ&:M@%Fng.tistory.com/s relationships.
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Translational Models

" TransR
— TransR learns relation-specific embeddings. Each relationship has its
own embedding space, and entities are transformed into this space
before translation.
— For each relation r, there's a transformation matrix M,. Entities are first
transformed:
h,=h-M,
t,=tM,
Then, the translation is applied: h, +r= t,

A"
A A
B
_A_ _A M.
f_,f; SB] %%E%:é%eé%%‘ing.tistory.com/ 5 Entity Space TransR Relation Space of r

Translational Models

® RotatE
— RotatE represents relations as rotations in the complex vector space.
For a triple (h, r, t), the relation r is modeled as a rotation from h to tin
the complex plane.

— This approach is particularly powerful for capturing symmetric,
antisymmetric, transitive, and inversion properties of relations.

¥aSBig3 Az
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Protein embedding (253 E)

C @ % colabresearchgoogle.com/drive/1smQsISVITKs|7difhyzlco-2eGI6mCCLEscrollTo=qinawWXBAPS2 Q & b 2 € 6 ¢ P o0

I 2{AL 0] HZS)

e A 27 25 AAASO N

1]
]
m
i)
n
-1
H
oo
ng
0

Colab Al

+ AE 4 HAE 2
v Protein embedding Of| X|

ORRIN-N = RV A |
v example: one-hot embedding (PyTorch)

Y. [12] import pandas as pd
import numpy as np
import torch

from torch.nn.utils.rnn i t pad_sequence

# Define the amino acid alphabet
seq_rdic = ['A', A e R W Vi NG S O QM S e e D e S R A H S K R e R 0y sy X B
seq_dic = {w: i + 1 for i, w in enumerate(seq_rdic)}

def encodeSeq(seq. seq_dic): # Change AA to numbe
if pd.isnull(seq):

return [0]

else:

return [sea_diclaal for aa in seq]
print(seq_dic)

protein = encodeSeq( " AAMARAAAVGE" . seq_dic)

S OB EE8B-EEE  htips://colab.research.google.com/drive/1smQsJSVITKs|7difhyzLco-2eG96MCCL?usp=sharing

A

" lecturel
— Introduction to pharmacogenomics
* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

® Lecture2
— Studies related to pharmacogenomics based on machine learning

MOLECULAR REPRESENTATION
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Why molecular representations are necessary?

O
/ e
N N

Representation of chemical compounds for machine-learning features
that fully captured wide ranges of chemical and physical properties of
the target molecule

§aoBI EezazAs

Types of molecular representations

" Molecular descriptors
" Molecular fingerprints
" Molecular embeddings

$aoBi Az Az
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Molecular descriptors

" Molecular descriptors are numerical values that characterize
properties of molecules

" The goal of a molecular descript is to provide a numerical
representation of molecular structure

" There are numbers of molecular descripts vary in complexity
of encoded information

®) | MW?
~ N /\
N
;I D 194.08
o) ITI N

Molecular descriptors

HO™ ~O
0D 1D 2D 3D
OOO
Oooo O\E/O@o % %
e P
o]
g A

1) 0D-descriptors (Molecular formula, i.e. Molecular weights, atom counts, bond counts),
2) 1D-descriptors (Chemical graph, i.e. Fragment counts, functional group counts),

3) 2D-descriptors (Structural topology, i.e. Wiener index, Balaban index, Randic index,
BCUTS),

4) 3D-descriptors (Structural geometry, i.e. WHIM, autocorrelation, 3D-MORSE, GETAWAY),
5) 4D-descriptors (Chemical conformation, i.e. Volsurf, GRID, Raptor)

Grisoni F., Ballabio D., Todeschini R., Consonni V. (2018) Molecular Descriptors for Structure—Activity
c_wsﬁ@iqaghgwﬂﬂands@n Approach. In: Computational Toxicology. Methods in Molecular Biology, vol 1800.
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Molecular fingerprints

" Fingerprint representations of molecular structure and
properties are a particularly complex form of descriptors.
Fingerprints are typically encoded as binary bit strings whose
settings produce, in different ways, a bit “pattern”
characteristic of a given molecule.

" Fingerprints are designed to account for different sets of
molecular descriptors, structural fragments, possible
connectivity pathways through a molecule, or different types
of pharmacophores.

e SBl B AI DI B 5| https://doi.org/10.1016/j.ymeth.2014.08.005

Types of fingerprints

e R

Structural based Pattern-based FP MACCS, PubChem, FP3,
FP4
Topological Path-based FP Daylight, FP2
Circular FP ECFP2, ECFP4, ECFP6
Pharmacophore FP 2D pharmacophore
Neural network based Graph-based representation GNN (graph convolutional
network (GCN), graph

attention network (GAT),
gated graph neural
network (GGNN), ...)

Molecular embedding seq2seq, mol2vec

$aoBi Az Az

[
o
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Pattern based fingerprints

SMARTS pattern PubChem Fingerprint

«  E7X SMARTS pattern T+ X E 7|t 2 3t +  PubChemOi| A K[A|SHSIR R E 7| = oF
NEE R PN s o i s |2 H 3 X} (881 bit vector)
Key position Key description Annotation Sections Description
11 ol Eaduadoladoladi | 4M Ring Section 1 (#0~#114) Hierarchic element counts
12 [Cu,Zn,Ag,Cd,Au,Hg] Group IB, 1IB Section 2 (#115~#262) | Rings in a canonic Extended Smallest
13 (48]~ [#7](~[#6])~[#6] oN(C)C Set of Smallest Rings ring set
14 [#16] - [#16] oS Section 3 (#263~#326) | Simple atom pairs
Section 4 (#327~#415) | Simple atom nearest neighbors

MACCS fingerprint SMARTS pattern 7| & Section 5 (#416~#459)

Detailed atom neighborhoods

Section 4 (#460~#712)

Simple SMARTS patterns

v" MACCS fingerprints (166 keys) . N
v EP3, FP4 fingerprints from OpenBabel Section 4 (#713~#880) | Complex SMARTS patterns
PubChem fingerprints bit2 description
. 53y
- 00| YOIl B9l BXO| QRS WSO M EIE K2 EHAIR St TX H40f
T8Ot Of2le| = E HolY = 8l&
- ooz #HEO| ZO|7t B Z
“SBl Sl EY e
Path-based fingerprints

o RXE 7|FECE D E linearfragment & 125t HAICZ olotE X A= E BT

+ & (hashing) L1 2|FE AHEH

« 2t Fingerprints

v' FP2 fingerprints (1,021 bit vector)
v" RDK fingerprints, Layered fingerprints (RDKit), CDK fingerprints (CDK)
H
K o]

C A 2nEEe ANRSOf ChYs

SH #ZE BAY = AL AEAIL . ; : o M

20| ZHE + g S
- o9l TEO| AFIAO TR glg M o
- X2 HEAHXIO| resolution= Sl & \ - /

ge[E0 met HetE = UAS paty g =2 . . . .
- Bit collisiond} bit space 'S H|E 122t L ot i e

20| X|ZHUXE &= A0

o=

‘\=\=/=f°i7

H H
/NVO /N7 ‘--IN\

X

H

g

Z0|0f| [}HE fragment = Of| A|

https://docs.eyesopen.com/toolkits/python/graphsimtk/fingerprint.html#section-fingerprint-path
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Morgan/Circular fingerprints

« Ol HAS 7|E2E FOU B L o7 = ZES
EH
=]

O/A\F:O Ao 2 EHASH= 7|
Y S (hashing) 7|'H2 AHESIO E7 Z0| L2
=N X2 HAXZ Shatstof At
Diameter 0: icariiflers:
v N Ti3iea1e0
« 22 Fingerprints Vi v g
v" Morgan/Circular fingerprints —_ Diameter 2: _ S asoszses
v’ ECFPs (ECFP4, ECFP6), FCFPs - e Nl o aech g, o
' " g i ! 1a:332203
Diameter 4: 18“215 284
- 53% NN Y Y O . s
- 0|0 ol &l #+=7t Of il o] 220 = S A i
| Lo
EH ol—l- ji o‘—:l Ol 7|-6 %I- |dentifier list representation:
- 74|AI_I- $E7|' HH}% 1266712900 1216914295 ?54:.‘_[%6? BB7920888 4788 744082560 798098402 G§'1'1:486E'5 l':ftl_?lg?:?
) 7.‘_‘|X-||7E,| Ol_l __I_LZE IC_:!E% E_CF_:‘_OLI'EE” g8772 N‘jmlaea -252457408 ._',:;m-.gg.u.,- ’ ;_1}1'_4;-‘;{;;;‘.-.__‘.'______
S8ofLE 59| T A0 - /e
xgrolx| 9 e i S AT S
—_] e 010000000010000011000010001. 101 10010100 1
- RAE A HY —
ECFP fingerprint2| A& H Xt
https://docs.chemaxon.com/display/docs/Extended+Connectivity+Fingerprint+ECFP
° Mol2vec learns vector Step 1: Generation of Mol2vec embeddings — Step 2: Application of Mol2vec descriptors
. unsupervised pre-training as input in supervised ML
representations of O g
molecular substructures @ i @ -
that point in Similar St‘n!cnccv:xllin;tl‘ién $ Sentence extraction ‘
directions for Corpus: 19.9 million compounds Data set: thousands of compounds
chemically related
Lookup
substructures.
* Compounds can ﬁna“y § § Exuaction of vectors
be encoded as vectors L | e
by summing the vectors (02,04, ] 103,05, ] <. Sam(102, 0.1, <] 103,85, o] )= (07,08
Of th e in d|V|d Ual High dimensional vector representations of Compound vectors

Morgan substructures

substructures $ , l Target
values

Lookup ‘

table

Compound
property

prediction

§aSBi ¥3a T2

02
oX
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GNN

Graph neural networks (GNNs) are
connectionist models that capture
the dependence of graphs via

message passing between the nodes

of graphs.

Extract features by considering the
structure of the data

Enables automatic feature extraction
from raw inputs

— can embed the drug(molecule) into
vectors which has topological structure
information with edge and atom features

With end to end learning, the
model can learn data driven
features

Ts* . ANCH 24 H S}
¢oSBiERdaRay

(a) 2D Convolution. Analogous
to a graph, each pixel in an image
is taken as a node where neigh-
bors are determined by the filter
size. The 2D convolution takes
the weighted average of pixel val-
ues of the red node along with
its neighbors. The neighbors of a
node are ordered and have a fixed
size.

1N
@
—

(b) Graph Convolution. To get a
hidden representation of the red
node, one simple solution of the
graph convolutional operation is
to take the average value of the
node features of the red node
along with its neighbors. Differ-
ent from image data, the neigh-
bors of a node are unordered and
variable in size.

Fig. 1: 2D Convolution vs. Graph Convolution.

https://arxiv.org/abs/1901.00596

Graph Neural Network

"  Message Passing : aggregate information from neighbors
ml(,Hl) = message_passing({h‘(,f) ,Yw € N(v)})
= Update : with message passing, update the hidden representation
hi+l = ypdate(mE, n(D)
®  Readout : represent graph with all hidden representations
htt! = readout(hLtl, vv € G)
h) =X,
N(v) : set of nodes adjacent to v
hi” it
W . o GNN Layer = Readout
hy h5*!
- E— n\ r E— ]
h Message passing h
hiﬂ .. Update h"iﬂ O = Graph
® . .
. hs v hs representation
hE‘r.] | hett [ ]
N = L
-'T-E'J h§+1
[ | ] |

53|

§aSBi 23Tz

hY : hidden embedding vector of node v at t-th GNN layer

60
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Graph Neural Network

" Message passing
— Message : Information that flows between neighbors and the target node
— message_passing : function that aggregate neighbor information of target node at t
time step with propagation rule
ml(,Hl) = message_passing ({h&f) ,Yw e N(v)})
K h \
. .. hgr) h{!—l]
® _
Target node h’ e Update Messie passing e 3 N
\ ® - h(t-l)
" W B @Bl B-
4. hg) hé‘ﬂ) hg—l)
n® o .
mE = P
p(® hs
7
[ [ mng) = message_passing({hgt) ,hfp, hét)}y
i COpj =g EEas o1
" Update

— update : function that update the t+1 time step hidden representation with t time step
node representation and message passing

hi+l = ypdate(mTY, n(D)

h(‘)
1
K" (Y
= Em 2 /ﬂ :

() : ~JBY pe-v
h: Messdge passin
Target node 2 ' HNE Update ge passing 3
(t=1)
_ h
\ hgt)-. E_ _H_._ ’—"B 3
hgi) : p4D) h&t—l)
3 5
. Jr1(5[)
h® ] 2 . e
.. ] hs‘ 3
h(:)
H ’ mgt“) = message_passing({hgt) ,hit), hgt)})
hitt = update(mgtﬂ), hgt))
..'SB' B AN A B 5H3] 62
] n] Bl e
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Graph Neural Network

® Readout

— readout : function that represent the graph calculated by all hidden
representations

— R = readout(hitl,vv € G)

G A

[ | | hi*t [ ]| |
hit AR |
. pt+1 - .
3
hitt httl — dout( ht+t ) =
- - ¢ - =readout( h§ HEe = || ]
h2_+1 hg+1 -
. pi o
t+1 ¢ W
h
6 [ | pit1
. 7 .

h$+1
= /
M ESEERERE ’

Graph Neural Network Models

®  Semi—Supervised Classification with Graph Convolutional Networks (GCN)
® Inductive Representation Learning on Large Graphs (GraphSAGE)

" Neural Message Passing for Quantum Chemistry (MPNN)

®  Graph Attention Networks (GAT)

®" How Powerful Are Graph Neural Network? (GIN)

® Analyzing Learned Molecular Representations for Property Prediction
(DMPNN)

— Various Message passing, Update, Readout function

2 Gpj e uw e v

[
o
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Compound representation (&

<« C M 23 colab research.google.com/drive/1smQsJSVITKs| 7difhyzlco-2eG96mCCL#scrollTo=0AnDISpgéshK Q &
& BIML.ipynb
CcO R
O 48 ®7) NY HEY &7 ER
~ + IE 4+ HAE
al * Compound Descriptor
(x} ——— .
v RDkitZ 0| &%} compound descriptor
(O]
() v [1] Ipip install rdkit-pypi # Install rdkit
v [2] from _future_ import absolute_import
import rokit
from rdkit import Chem
from rdkit.Chem import rdMolDescriptors # Module containing functions to compute molecular descriptors
from rdkit.Chem import Descriptors
import rdkit.rdBase
from rdkit.Chem.MACCSkeys Import GenMACCSKeys
from rdkit.Chem import AllChem
from rdkit.Chem import Draw
¥ [3] # Reading single molecules

L2 )C") # caifine

N2C

m = Chem.MolFromSmi les("CN1C=NC2=C1C(=0)N(C(

from rdkit.Chem.Draw import IPythonConsole #Needed to show molecules

from rdkit.Chem.Draw.MolDrawing import MolDrawing. DrawingOptions #0nly

needed if modifying defaults

==
=

¥ o

-~
w

8 %z

RAM
) ey

1=

©® e O OO0

) O
y ST

@ Colab Al

@

A

S OB EE8B-EEE  htips://colab.research.google.com/drive/1smQsJSVITKs|7difhyzLco-2eG96MCCL?usp=sharing
Lecture 1- END.
SBI s}g_..xum;ugﬁrﬂ
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Drug discovery and development -
Pharmacogenomics and beyond

Hojung Nam, Ph.D.
Professor
School of Electrical Engineering and Computer Science (EECS)
Gwangju Institute of Science and Technology (GIST)
Contact: hjnam@gist.ac.kr

Contents

" Lecturel
— Introduction to pharmacogenomics

* Drug discovery and development
— Key data sources
— Representations of proteins, chemicals

® Lecture 2

— Studies related to pharmacogenomics based on machine learning
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CYP450 VARIATIONS AND DRUG
RESPONSES

§aoBI EezazAs

Pharmacogenomics and drug metabolism

" A patient’s genetic makeup and their response to
pharmaceutical drugs are seen with regards to their
metabolism

Ultra-rapid Normal Poor
Metabolizer Metabolizer Metabolizer
Under-dosed: Expected Over-dosed:
. Adverse drug
Lack of efficacy response .
reactions

¥aSBig3 Az

- 35 -




Cytochrome P450 enzymes

" The super-family of cytochrome P450 enzymes has a crucial
role in the metabolism of drugs

® CYPs are the major enzymes involved in drug metabolism,
accounting for about 75% of the total metabolism

" Most drugs undergo deactivation by CYPs, either directly or by
facilitated excretion from the body

CYP3A4SS ] 38%
(a7 1:1 I E— T
(a5 7e 1 B —— T
crPa? ] 1%
cypac19 [ 8%
ovp2El [ 4%
cvp2es [ 3%

evene ] 3w

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

e.g. ) Proportion of antifungal drugs metabolized by different families of CYPs.

-‘J:SBi si2MmyesEts  https://en.wikipedia.org/wiki/Cytochrome_P450#Drug_metabolism

CYP450 isozymes

" Humans have 57 genes and more than 59 pseudogenes

,:SBI sty https://en.wikipedia.org/wiki/Cytochrome_P450#Drug_metabolism

divided among 18 families of cytochrome P450 genes and 43
subfamilies

Family | Funclion Members Genes pseudogenes

drug and steroid (especially estr

e =
wificatian {forrr

ogen) metabolism, benzo]dpyrens 3 subfamilies, 3 genes,

ajpyrens-7.8-dilydrodiol-8,10-spaside)

CYP2 | drug and steroid metabolism Too many to st

CYP3ASIP, CYPIAS2P,

CYPIASP, CYPIATITP

CYP3 | drug and steroid (including testosterane) metabolism

C¥P4 | arachidonic acid or fatty acid metabalism Teo many to kst

€¥Ps | thromi
CYPT | bile &

CYPB | wane

VP11 | srecoid bissynthacis
CYP1T | steroid bissynth
CYP19 | sterond biosynthesis: aromatase synthesizes estrogen

CYP20 | unknewn function

CYP21 | steroid biosynthesis

1P
CYP24 | vitamin D degradaton 1 subfamily. 1 gene
CYP26 | retinaic acid hydroxylase 3 subfamilies, 3 gen 26C1

2781 (vitamin Dy 1-alpha hydrosylase,
CYPET | vaned ; e
{unknown function)

CYPAO | T-ziphs hydrowylstion of 24-hydrexychelesteral
CYP46 | cholesterol 24-hydroxylsse CYPAGALP

; ; CYP51P1, CYP51P2
CYPST | cholostorsl binsynthess BEEL

psoudogenes
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CYP2D6 alleles

o
A e
" | High-function alleles
(gene duplications)
CYP2D gene locus *1x2, "2x2 and *35x2
. \
i cypapsp =
Chromosome 22 (pseudogene)
,' ‘ Normal-function alleles
(e.g., *1, "2 and *35)
‘ & |
CYP2D7 —
(pseudogene) __{1
I Low-function alleles
‘ (e.g., 10, *17 and *41)
S CYP2D6 S
& 4 Null-function alleles
(e.g., *3, "4, *5, *6, *7,
8, *12, *13, %14, *15,
*16, *18, *19, *20, *21,
*38 and so on)

S\

https://www.futuremedicine.com/doi/10.2217/fmeb2013.1
3.130

Related study:
prediction of CYP2D6 haplotype function

Transfer learning enables prediction of
CYP2D6 haplotype function

Gregory Mcinnes ', Rachel Dalton 2‘3, Katrin Sangkuhl ", Michelle WhirI-CarriIIo", e
Seung-been Lee, Philip S. Tsao»*7, Andrea Gaedigk(:*®, Russ B. Altman®'%#, Erica e L e
L. Woodahlp?* 1]
f_iﬁ
Sruveg et Vil b R el
e W =i,
Wt [ Gt
B Deia fomating i
Y — R EY L

‘and annotation data

& Functionsl prodiciion

Input Dne-hol sncodad sedquencs
and aneotation datn
Functionnl

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
. haplotype function. PLoS Comput Biol 16(11): e1008399. https://doi.org/10.1371/journal.pcbi.1008399
FJ;:SBI ?LEM%I;%EEFH plotyp p (11) p 8 ] p

(=]

Soce i

-37-




Related study:
prediction of CYP2D6 haplotype function

" CYP2D6 is an enzyme expressed in the liver that is responsible
for metabolizing more than 20% of clinically used drugs

" More than 130 haplotypes comprised of single nucleotide
variants (SNVs), insertions and deletions (INDELs), and
structural variants (SVs) have been discovered and catalogued
in the Pharmacogene Variation Consortium

Related study:
prediction of CYP2D6 haplotype function

" |Input
— CYP2D6 Full genomic sequence (one hot i‘:ﬁmm r‘ enlcwn et
vector) = p——
— 9 annotations (one hot vector) R (g
* Coding region, rare variants, deleterious, ootz Il
INDEL, methylation mark, DNase a—
hypersensitivity, TF binding site, eQTL, active S.E‘"JSZ.E%’E"‘J:.‘?,?;Z“:“:: e o =
site _
" Outeut e — [ @
— Haplotype activity (No, Reduced, Normal e
activity)
" Data .. = @°®
— Pre-training with 50,000 randomly selecting ' ®
a pair of CYP2D6 star alleles with curated e =
function, Pre-training with 314 in vivo data = @ .

— Fine-tuning with PharmVar data
" Model-3CNN+2FC

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6
haplotype function. PLoS Comput Biol 16(11): €1008399. https://doi.org/10.1371/journal.pcbi.1008399

IC__‘ ._SBI aE'&b S o §|
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Hubble.2D6 Results
a Training predictions
Accuracy: 100%

o -
No function Decreased  Normal
True function

Normal 0

Predicted function

Baseline Model Results
¢ Training predictions
Accuracy: 74%

3 0

No function . Q) 0

No function Decreased  Normal
True function

Predicted function

d Validation predictions

Predicted function for uncurated alleles

p Validation predictions e

Accuracy: 88%
o o [l
0 3V 0
M-
No function Decreased  Normal
True function

Count

Accuracy: 54%

1 0

0
7 2 0 0

No function Decreased ~ Normal
True function

Normal
Predicted star allele function

Decreased function No function

Fig 2. Star allele classification results. The figure depicts performance metrics for the prediction of star allele function in the training and validation sets; confusion
matrices for class prediction in training and validation are shown in (a) and (b), for Hubble.2D6 and in (c) and (d) for the baseline model. (e) shows the frequency of

predicted function for uncurated star alleles.

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6

haplotype function. PLoS Comput Biol 16(11): €1008399. https://doi.org/10.1371/journal.pcbi.1008399

L CpjaRugnay
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@  \easured metabolic activity for star alleles with curated function

€ Measured metabolic activity for uncurated star alleles

ot A 2 -
454 _— 2
TR @—_-ﬂ,— o e gl
484 22 —8—
24 _
214 —— 28 —-———
ag4 ——s
494 _—— 41 ——
464 —— L ———
174 i |
a5~ —— 32 —_— |
817 .y —
= =
2 54 —— Legend
2504 —— g 2 P
724 —.— 30 —_——
314 Decreased
104 il 52 —8—
71 gl @ Nofuncion
404 B O 66 - |
;;: v A Training 37 A Legend
ET: ® Test ™ oA @® Normal
a1 O Trelaber 75 2 Peciunant
7 é ®  Predicted label dr,l ® @  Nofuncion
1= =
B R:0.712 g _I R 0475
E r ANOVA P: 6.98e-06 2 l ANOVA P: 0.01
i . 2
@ a

30 &0
Metabolic activity (% of CYP2D6*1)

B4

«

ki) 60
Metabolic activity (% of CYP2DE*1)

Fig 3. Prediction of star allele function with in vifro data. The figures summarize the distribution of metabolic activity measured in vitro for star alleles whose function
was predicted by Hubble. The distribution of functional activity is shown in (a) and (b) for star alleles with CPIC-assigned clinical function assignments. (a) star alleles
included in the training process are depicted with a triangle, and those held for testing are depicted with a circle. Error bars depict the standard error of the measured
function. The outer edge of each point indicates the true, curator-assigned phenotype, while the inner color represents predicted function. (b) distribution of values for
each predicted functional class for data shown in (a). (c) star alleles without assigned function status; colors represent the predicted function. (d) variance in measured
activity of the star alleles for each predicted label for data shown in (c).

$25Bi

Mclnnes G, Dalton R, Sangkuhl K, WhirlCarrillo M, Lee S-b, Tsao PS, et al. (2020) Transfer learning enables prediction of CYP2D6

Sl Y E 53|

Karean Society for Bioinformatics

haplotype function. PLoS Comput Biol 16(11): €1008399. https://doi.org/10.1371/journal.pcbi.1008399
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GENETIC VARIATIONS AND DRUG
RESPONSES

§aoBi Bz az3na

Related study:
prediction of cancer cell sensitivity to drugs

SCIENTIFIC REPg}RTS coRscan

Virtual cells
- i

o

Most effective

OFEN Cancer Drug Response Profile scan PsesEd

drug(s)
(CDRscan): A Deep Learning Model patients Vit
. . genomic data )
That Predicts Drug Effectiveness (
. o Qs Q BOIOIIE
e from Cancer Genomic Signature 6 = @
published online: 1 Juns 2 . . ) N . N or ATy STy OGP DY Drug responsive
- " L"Z‘;ﬁ’,ﬁ'&?:.%‘g",i”n;f:f:;;?;,";’;ﬁ‘:?hefx’“"g’"L“‘ KnesYum o< Appro;;:dru?(s) sl genor%ic "i&gge'Pfi"(S
or :ny §m|a | Keras 2.0.6 corresponding
chemical TensorFlow 1.3.0 cancer types
Ubuntu 16.04.3 LTS
* GDSC

CCLP GDSC
17

28,328 mutation positions in 567 genes

« 787 cell lines M | >ooccet e 2 4
DO
* 244 drugs -
DOODOOA "
Cancgr5 types "E‘?‘:'?g" 787 Anlicar?g:r drugs
(TCGA defined) iof5gy'Gonos ' '"*® o e o)

O:SBI B AN O 5 31E| Chang, Yoosup, et al. "Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug

Effectiveness from Cancer Genomic Signature." Scientific reports 8.1 (2018): 8857.

- 40 -




Related study:
prediction of cancer cell sensitivity to drugs

a
CDRscan (mean of five models) Random Forests SVM

'] re=0.843 3] R2= 0,698 131 Re=0.562
310] RMSE =0.980 coot® 310] RMSE =1.374 310 RMSE = 1.516
O Q . O ‘
g 5 et 5 =4 5} -
Y B0 B of
3 3 3 _|
g -5 g -5 E -5-‘
Q10 e 10 o 10.‘

15 15 15

-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
Observed In(ICsg) Observed In(ICsp) Observed In(ICsq)

multi-fold cross validation (five-fold with each fold)

Ca‘SB' A A B 5H3 Chang, Yoosup, et al. "Cancer Drug Response Profile scan (CDRscan): A Deep Learning Model That Predicts Drug
62 | e s Rttt Effectiveness from Cancer Genomic Signature.” Scientific reports 8.1 (2018): 8857.

DrugCell

Cancer Cell o

Volume 38, Issue 5, 9 November 2020, Pages 672-684.e6 CE[PFBSS

Article

Predicting Drug Response and Synergy Using a
Deep Learning Model of Human Cancer Cells

Brent M. Kuenzi 1’ S‘jisoo Park 1'% Samson H. Fong Lz Kyle 5. Sanchez i,john Lee l,Jason F. Kreisberg :.jianzhu
Ma?, Trey Ideker L2360

Show more v

o Share =8 Cite

J‘S ' EILANDIA b B
§aSBiFRdBYRas
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DrugcCell

A B Binary mutations 2,086 subsystems Chemical
MW 6 neurons / subsystem ‘\':} structure

Genotype Drug 5 layers .
1 1 N
* * e Morgan 6ngarprlnt
e
Embedding
of chemical
structure
ANN
In silico
treatment of
cell with drug =
DrugCell :
\4
Response of cell to drug Genotype embedding Drug structure embedding

f

CTRP (Cancer Therapeutics

Response Portal) v2 + GDSC

509,204 cell line-drug pairs,

covering 684 drugs and 1,235 e CCLE

cell lines. e Binary vector of top 15% most frequently mutated
genes -> total 3,008 genes

Morgan Fingerprints (nbits = 2048, radius = 2)

¢ Cpje=aRnes)
Korean Society for Bioinformatics
Combinatorial -
gene di::::t;ns parent-child
: relationships
from ontology
definition are
Visible represented as
neural
network neuron
connections
S Prodicted growth & Neuron
genetic interaction X
ranging from
d ntracellular non-membrane 20 to 11075

per system

Genetc Interaction

YELO61C YHR120C X n

Scrch Rewalt (Clack  ackext geaeype

Intracellular organelle

Y wapps Absolute change in state: O - 1

\ Other paths Y,

Figure 1 | Modeling system structure and function with visible learning. (a) A conventional neural network translates input to output as a black box
without knowledge of system structure. (b) In a visible neural network, input-output translation is based on prior knowledge. In DCell, gene-disruption

genotypes (top) are translated to cell-growth predictions (bottom) through a hierarc“ffﬁg sﬁ/ﬂ%@?ﬁfé?lg%@g&m?ﬂw%r627

5 the pnor structure usmg multlple neurons per subsystem. (d) Screen capture of DCellomtme servite:
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DrugcCell

No performance
loss than ANNs.

A B (o
rho = 0.8
=30 = 1.0
o~ 10 3 °
2 8 %
< 08 § 05 § 051
g : 5 5
g 06 £ =
] - 00 i © 007
= o £
S o4 8 8
b § .05 g .05
) E ot £
5 02 § S g |
8 & p < 0.0001 & p>0.05
© o sTwenr~n® o o % 1.0 05 00 05 10 -1.0 05 0.0 05 10
Q@ QNN O 9 O T = Spearman correlation (Elastic Net) Spearman correlation (matched black box)
Actual drug response (AUC)
208
£
D E § 06
£
10 o g 0.4
S ©
= 05 © D 0 20
(=) ,g 0.8 \@' o \\ e\b
g o ‘.\('o V &0 ‘bb 3
g 238 & %‘b Q g
o 0.0 s e
5 E8
z é a 04
E-O.S & g
3 §
& | ) ) _p <0.0001 € o0
-1.0 -0.5 0.0 0.5 1.0 3 Drugs
Spearman correlation (tissue only black box) 2]

M High confidence drugs (rho > 0.5)

VNN really

>
w
(9]
o

asitive B

© BRAF mutations

00 04 08 12
Selumetinib AUC

e EGFR, BRAF,
or LKB1 mutations

< e
. .
. .
Pk g
.

-

L

ot n

i
.
M
':’l
. -

Genotype embedding (PC2)
Genotype embedding (PC2)
Genotype embedding (PC2)
Genotype embedding (PC2)

n =229
Genotype embedding (PC1)

n =382
Genotype embedding (PC1)

n =460
Genotype embedding (PC1)

n = 860
Genotype embedding (PC1)

E H
&
g response to
3 X . L sad ° Response to
AMP
g g . ° ° ° ecoe . Y pespenseo @
@
e o 0 o o oeeccec e o o o sccoce .
Clustered 2 % ¢ ‘Paclitaxel’ RLIPP
ecocoe ©00000000000000000000000000000050¢00060b00 -
by target é . o Targot class - Stabilize
- SEGFR .
class B| e onex microtubules
E . oCOK
H o o (O] Ml 22
L
Chemical structure
embedding (PC1)
Sensitive _Resistant
F Sonstve Resstant G 1 00 04 08 12 J
00 04 08 12 MaNbole pttomy 8 Pacitaxel AUC 110,
2l . Paciitaxel AUC ___an;a b4 ‘
) *
g, 2 — Rogulation g . 1001
£ ; = 3|5 g % Combination with
. % A B it = ombination wit
E T Insulin secretion > 4% = T
£ i3 : V'.an z 2 o Glycolysis inhibitor >
° . — > . ope .
% 2 ifxg ; o S g o - Significantly Effective!
2 ' 53 .
] S 60|
3 _ g § |
n =239 y 5 & |n=239 - Bn;"‘ RS
P R TR S PR e E Top 5% of subsystems R 10 CAMP ‘aclitaxel (8nM)
o® Genot, bedding (PC1 lesponse 10 ¢ 7
F“ 2 SBI SE* ; Ra MOECH embedding (PC1) 206 (PoouM) @e

- 43 -




PROTEIN SEQUENCE AND DRUG
INTERACTIONS

¥aSBizz sz

Prediction of drug-target interaction

Imatinib

BCR/ABL fusion protein

faSBigzazazal
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DTI prediction using protein descriptors

Large-Scale Prediction of Drug-Target Interactions
from Deep Representations l

Peng-Wei Hu Keith C.C. Chan Zhu-Hong You
Department of Computing
Hong Kong Polytechnic University
Hung Hom, Kowloon
Hong Kong
{esphu, eskechan, esyzhuhong |i@comp.polyu.eduhk

v
MFDR employed stacked Auto-Encoder(SAE) to abstract ( Autso!—ﬂé:::der ) -
original features into a latent representation with a small
dimension. With latent representation, they trained a Y

support vector machine(SVM), which performed better -
than previous methods, including feature-and similarity-

'
based methods. (—Suppor» Vector
Machine
Chan, Keith CC, and Zhu-Hong You. "Large-scale prediction of drug- ‘ ﬁ
target interactions from deep representations." Neural Networks

(IJCNN), 2016 International Joint Conference on. |EEE, 2016.

Multi-scale features deep representations
inferring interactions (MFDR)

i Opj erauT gL

Korean Society for Bioinformatics

DT prediction using protein descriptors

N A
- ‘\{\\ X2 ;

5fold cross-validation

suudiebuiy 6rq
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Fig. 2. A Stacked Auto-Encoder composed by two visible layers and two — ' [ ——wroeson0: |
hidden layers o7 07 03 04 05 0R 07 D08 09 %G1 02 03 04 0F 06 07 08 08 1
False-positive rate False-positive rate
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Interactions N AR N e . - e

EharrieettireSameZie=tong You. "larBe pgalodiiaiisdioN of drug-tardét ** Fosepositive rate

: . interactions from deep representations." Neural Networks (IJCNN), 2016
B A 55
S‘;SB| ‘FE%E’«,%%SEI International Joint Conference on. |EEE, 2016.
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DTI prediction using protein sequence

Bioinformatics, 34, 2018, 821829
doi: 10.1093/biginformatics/bty593
ECCB 2018

OXFORD

DeepDTA: deep drug-target binding
affinity prediction

Hakime Oztiirk", Arzucan Ozgiir’* and Elif Ozkirimli®*

= Model
— Input — Protein sequence, SMILES
— Output — Binding affinity
— Model — CNN for protein, DNN for drug
= Contribution
— first used CNN to learn representations
of proteins
SBI s}qgmxgﬁrﬂ

7] s
! /1
[ |
[ Dropout. DeepDTA
S e——)
| . Dropout
e ————
177 1 [
Combined representation
|
.
— T —
i =
‘ [ coma | . [ coma ]
| [eome ] [ come |
‘ [ com | [ cow |
Embedding Embedding
layer layor
Label Label
encoding -ne:.u
CN=C=0 MEVKREHWATRLGLILAMAGNAVGLGNF . .
SMILES Sequence

Fig. 2. DeepDTA model with two CNN blocks to learn from compound

SMILES and protein sequences

DTI prediction using protein sequence

DeepConv-DTI: Prediction of drug-target
interactions via deep learning with
convolution on protein sequences

Ingoo Lee(»*, Jongsoo Keum®, Hojung Nam¢ *

= Model
— Input — Protein sequence, ECFP4
— Output — Interaction/Non-interaction
— Model — CNN for protein, DNN for drug
= Contribution

Embedding representation of protein
works well

Model can capture local residue
patterns
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! Mew DTls Prediction using Independent Dataset

All proteins and compounds

.? # of compounds -
t #aof negativa DTIs:
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#of proteing : 3675 |
#of postive DTis 32,568 |

vaerpalamerer
Optimization

. Using Yalidation Dataset |

- MATADOR :
- Predicled negative 1 !
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11 Bofpostve DTIs @ 270 |
80T
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Lee I, Keum J, Nam H (2019) DeepConvDTI: Prediction of drug-target interactions via deep learning with convolution on protein
sequences. PLoS Comput Biol 15(6): €1007129. https://doi. org/10.1371/journal.pcbi.1007129
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* Compare pooled convolution result with binding sites from sc-PDB

A Protein and ligand B Binding site and ligand
of 1a7x_1 of 1a7x_1

c Protein and ligand D Binding site and ligand
of 1ny3_1 of 1ny3_1

e MAPK2 [Kinase]

Number of convolution results covering residue

[ T

0 1 2 3<

740 . A 8| Lee |, Keum J, Nam H (2019) DeepConvDTI: 'Pred|ct|on of drug-target |ntera'ct|ons via deep learning w'|th convolution on protein
| s el b sequences. PLoS Comput Biol 15(6): €1007129. https://doi. org/10.1371/journal.pcbi.1007129
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HoTS: Highlights on Target Sequence and Prediction of
Drug-Target interaction (2022)
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* Prediction of binding regions for DTls
* Showed better performance in hit identification
* Aninterpretable deep Learning model

Ingoo Lee, Hojung Nam*,
) :SBI ?:__E*o"%ﬁié_'—?.il "Sequence-based prediction of binding regions and drug-target interactions", Journal of cheminformatics 2022
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Performance improvement in
DTI prediction

DTI Test dataset 1

100 1.0
El HoTS
. BN MONN (KIKD pretrained)
* DTl test dataset 1: proteins B MONN (1C50 prtrained)
a0 4 B CocpCony-DTI - Dc
collected from the DTI Database TS (NoBR pretran)

B TransformerCPl

as general druggable targets
* evaluate DTI prediction
performance for druggable
targets whose BRs have
not been trained.

e DTl test dataset 2: DTIs for

Sensitivity Specificity Precision Accuracy F1 Score
proteins whose SCOPe family
L b DTI test dataset 2
was the same as the BR training 0 y
dataset = ::rhTN (KIKD pretrained)
 evaluate DTl prediction . —rsesn el
. B HoTS (No BR pretrain)
performance for proteins O ——

with the same or similar
interacting motifs.

r 0.

- DE

Sensitivity Specificity Precision Accuracy F1 Score

H *
o B2 MO A BB Ingoo Lee, Hojung Nam*,
o SB' Ko Scstaty f Miiedirraniic "Sequence-based prediction of binding regions and drug-target interactions", Journal of cheminformatics 2022

GENE EXPRESSION AND DRUG
RESPONSE

¢ Cpj Ry Las

Korean Society for Bioinformatics
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Related study:
prediction of cancer cell sensitivity to drugs

DeepDSC: A Deep Learning Method to
Predict Drug Sensitivity of Cancer Cell Lines

Min Li, Yake Wang, Ruiging Zheng, Xinghua Shi, Yachang Li, Fang-Xiang Wu, and Jianxin Wang

.:>

* GDSC, CCLE
* Transcriptomic feature
* Morgan fingerprint

* Autoencoder based feature extraction

S = g =

Li, Min, et al. "DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines." IEEE/ACM
1s® SBI B2 AND 33 Eg_lpﬂ transactions on computational biology and bioinformatics (2019).

Related study:
prediction of cancer cell sensitivity to drugs

method NN KBMF RF DeepDSC

v RMSE 0.83 0.83+/- 0.75+/- 0.52+/-0.01
1.00 0.01

R: 0.72 0.32+/- 0.74+/- 0.78+/-0.01
0.37 0.01

LOTO REMSE 099 NA 0.51+/- 0.64+/-0.05
0.16

R: 06l NA 0.72+/- 0.66+/-0.07
0.08

LOCO RMSE NA 0.85+/- 1.40+/- 1.24+/-0.74
041 0.50

R: NA 0.52+/- 0.13+/- 0.04+/-0.06
0.37 0.11

* 10-fold cross-validation
* Better performance than typical machine learning methods
* Deep learning based feature extraction

Li, Min, et al. "DeepDSC: A Deep Learning Method to Predict Drug Sensitivity of Cancer Cell Lines." IEEE/ACM
3 e,; SBI i&*o" o 33 Eg_&' transactions on computational biology and bioinformatics (2019).
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Related study:
prediction of cancer cell sensitivity to drugs

B Mutation autoencoder
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» GDSC for response prediction network :
* Using both of genomic and transcriptomic feature {
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* Autoencoder based feature extraction B oo, ¥
Chiu, Yu-Chiao, et al. "Predicting drug response of tumors from integrated genomic profiles by deep neural networks."
g °.SB- SN A S 8| BMC medical genomics 12.1 (2019): 18.
og I Korsen Sodety for Bioinks
°
°
Related study
prediction of cancer cell sensitivity to drugs
Measurement DeepDR Linear regression SVM Random initialization PCA Eenc Only Mepe only
Median MSE in testing samples® 1.96 10.24° 892 230 244 1.96 309
Median number of training epochs® 14 - - 9 29 17 95
< TAMOXIFEN in BRCA g CEFITINIB In NSCLE = TGX221in LGG S VINORELBINE in BRCA
ETH .y 2 f"‘r B { 108 2 7
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= = o +
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* Samples with mutation showed significantly different result compared
to non-mutated samples

Chiu, Yu-Chiao, et al. "Predicting drug response of tumors from integrated genomic profiles by deep neural networks."
BMC medical genomics 12.1 (2019): 18.
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Related study:
prediction of cancer cell sensitivity to drugs

S libahcy

pubs;acs org/molecularphammaceutics

pharmaceutics

Toward Explainable Anticancer Compound Sensitivity Prediction via
Multimodal Attention-Based Convolutional Encoders

Matteo Manica, *® Ali Osknoci,}'” Jannis Born, A Vigneshwari Subramanian,”
Julio S;‘icz—Rodrigm:z.” and Maria Rud.u'g'ucz Martinez*"’

& Clte This: Mol Pharmacsutics 2019, 16, 4797-4806

"IBM Research, 8803 Ziirich, Switzerland

“ETH Zurich, 8092 Zurich, Switzerland

University of Ziirich, 8006 Ziirich, Switzerland
SRWTH Aachen University, 52056 Aachen, Germany
"Heidelberg University, 69047 Heidelberg, Germany

Transcriptomic feature
PPI for feature selection
SMILES

Attention based model
* |nterpretable

@ :ic50
(e

Dense
Layers

Llll[ll[‘llllllJll
Encoded SMILES or FPs

Gene Expression Encoder SMILES Encoders

Genes Subset SMILES Embedding

Propagation
29N
o
o (!

@:J

SMILES:[...CCOHNCCCCIH..]
Gene Expression

Inputs: ~16000 genes

FPs: [BUOOOUDUMOW. .. 00000000010 ]
Figure 1. Multimodal end-to-end architecture of the proposed
encoders. General framework for the explored architectures. Each
model ingests a cell-compound pair and makes an IC50 drug
sensitivity prediction. Cells are represented by the gene expression
values of a subset of 2128 genes, selected according to a network
propagation procedure. Compounds are represented by their SMILES
string (apart from the baseline model that uses 512-bit fingerprints).
The gene-vector is fed into an attention-based gene encoder that
assigns higher weights to the most informative genes. To encode the
SMILES strings, several neural architectures are compared (for details
see section 2) and uwsed in combination with the gene expression
encoder in order to predict drug sensitivity.

Manica, Matteo, et al. "Toward explainable anticancer compound sensitivity prediction via multimodal attention-based
convolutional encoders." Molecular Pharmaceutics (2019).

Related study:
prediction of cancer cell sensitivity to drugs

75 |  standardized RMSE = 0.0457
RMSE = 0.887
50 Pearson = 0.9284
R2 = 0.8619
S n = 16064
E 25
o
e
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£
Attention 4 ~2:3
= Weight -
o e o -5.0
P i & ]
ST e -75 =50 =25 00 25 50 75
6 ST SR - S log(Predicted IC50)
€ < ‘ . Encoder ty Drug Standardized RMSE
w % & neoder type structure Median + IQR
g Deep baseline (DNN) Fingerprints 0.122 + 0.010
= & . Bidirectional recurrent (hRNN) SMILES 0.119 £0.011
Stacked convolutional (SCNN) SMILES 0.130 £ 0.006
T e Self-attention (SA) SMILES 0.112* £ 0.009
Contextual attention (CA) SMILES 0.110* 4+ 0.007
Multiscale convolutional attentive (MCA) SMILES 0.109* £+ 0.009
MCA (prediction averaging) SMILES 0.104%% + 0.005
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1ljung Jin, Hojung Nam, “HiDRA: Hierarchical Network for Drug Response Prediction with Attention”, J. Chem. Inf. Model.

L CpjaRugnay

Karean Society for Broinformatics

2021, 61, 3858-3867

A HiDRA B Random Forest
100 100 ‘
. RMSE: 1.0064 . 1.2537
21 7.51|PCC:0.9307 g 751 |PCC:0.8919
2,
= o R%: 0.8647 = o R 0.7431
S &)
wn
8 25 O 2
°
T o0 @ 00
< c
g 2s 9 25
Q ¢ Q
L so L 50
£ £
75 75
-10.0 100
210075 -50 -25 00 25 50 7.5 100 -100-7.5 50 -25 00 25 50 75 100
In(Predicted IC50) (uM) In(Predicted 1C50) (uM)
Gene-level attention distribution Permutation test
5
p-value: 0.0 === Target vs Nontarget
10 w— Target =1 Randomly split
w===Nontarget 4
08
2 23
@ 06 2
= 04
02 1
00 0
04 0.2 00 0.2 04 06

00 05 10 15 20 25 30 35
Representative gene-level attention

Difference of gene-level attention

100%

80%

60%

40%

20%

0%

In(observed IC50) (uM)

‘w‘-qon -75 5.0 -25 00 25 50 7.5 100
In(Predicted IC50) (M)

Relation between target
and gene-level attention

0 3 4 5 6>
(target)
Distance from the target on the PPI

Top % of
attention rank
0%~20%
20%~40%
40%~60%
60%~80%

=
=
=
=
= 80%~100%

Iljung Jin, Hojung Nam, “HiDRA: Hierarchical Network for Drug Response Prediction with Attention”, J. Chem. Inf. Model.
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