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Curriculum Vitae

Speaker Name: Inuk Jung, Ph.D.

» Personal Info

Name Inuk Jung
Title Assistant Professor
Affiliation Department of Computer Science, College of IT,

Kyungpook National University

p Contact Information
Address 80 Daehak-ro, Buk-gu, Daegu 41566

Email inukjung@knu.ac.kr
Phone Number  053-950-5552

Research Interest

Machine learning and computational genomics

Educational Experience

2004 B.S. in Computer Science, Canterbury University, New Zealand
2007 M.S. in Computer Science, Yonsei University, Korea
2017 Ph.D. in Interdisciplinary Program in Bioinformatics, Seoul National University

Professional Experience

2007-2011 Research Engineer at LG Electronics, Anyang, Korea
2017-2019 Research Fellow, Bioinformatics Institute, Seoul National University, Korea
2019- Assistant Professor at Department of Computer Science, College of IT,

Kyungpook National University

Selected Publications (5 maximum)
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Jaemin Jeon, Eon Yong Han and Inuk Jung, "MOPA: An Integrative Multi-Omics Pathway
Analysis Method for Measuring Omics Activity”, PLOS ONE 2022 (in publication)

. Inuk Jung, Minsu Kim, Sungmin Rhee, Sangsoo Lim and Sun Kim, MONTI: A Multi-Omics

Non-negative Tensor Decomposition Framework for Gene-Level Integrative Analysis, Frontiers
in Genetics, 10 September 2021

. Minsik Oh, Sungjoon Park, Sangseon Lee, Dohoon Lee, Sangsoo Lim, Dabin Jeong, Kyuri Jo,

Inuk Jung and Sun Kim, “DRIM: A Web-Based System for Investigating Drug Response at the
Molecular Level by Condition-Specific Multi-Omics Data Integration”, Frontiers in Genetics, 12
November 2020

. Inuk Jung, Joungmin Choi, and Heejoon Chae, "A non-negative matrix factorization based

framework for the analysis of multi-class time-series single-cell RNA-seq data." IEEE Access 2020

. Sangsoo Lim, Sangseon Lee, Inuk Jung, Sungmin Rhee, Sun Kim, "Comprehensive and critical

evaluation of individualized pathway activity measurement tools on pan-cancer data”, Briefings
in Bioinformatics 2018
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Bio Data| Trend of Cost & Volume
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Timeline of multi-omics technologies

n 2007 "
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Kang Ning & Yuxue Li, Introduction to Multi-Omics,
Translational Bioinformatics book series 2023

A Big Data Example

THE CANCER GENOME ATLAS

1
* The Cancer Genome Atlas (TCGA) 3
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Hypothesis-driven

1) Observe some phenomenon and
2) create a hypothesis

$

]

Create data related to the hypothesis

$

Validation:
Accept or reject the hypothesis

Data-driven

Collect tons of data

.
¥

1) Search for patterns

$

2) Create hypothesis

$

Validation:
1. Look back into the data
2. Counsel domain experts for logical
correctness

1. Multi-omics




Multi-omics interconnections

ATGGCAACTC TAAAGGATCA GCTGATTTATAATCTTCTAT AGGAAGAACA
ATGGCAACTG TAAAGGATCA GCTGATTTAT AATCTTCTAT AGGAAGAACA
ATGGCAACTC TAAAGGATCA GCTGATTTATAATCTTCTAT AGGAAGAACA
ATGGCAACTG TAAAGGATCA GCTGATTTAT AATCTTCTAAAGGAAGAACA
ATGGCAACTC TAAAGGATCA GCTOATTTATAATCTTCTAA AGGAAGAACA

0
HaC OH
l OH

I .\‘ Pyruvate (C00022)

_ AUGGC ARCUCUARAG
= AGACCCCCCAG

-

e B
‘!“—:i“'} ':'{'. —
LDHA HGNC:6535

Lactate
(from microbiome-
Lactobacillus)

Unknown Protein

Krassowski, Michal, et al. "State of the field in multi-omics research: From computational
needs to data mining and sharing." Frontiers in Genetics 11 (2020)

Trend in multi-omics research

Omics combinations Multi-omics papers

9 200
. | 750
2 150 3
2 s
3 100 ]
7] o 500+
2 = T E
= ]
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transcripts E
genes
proteins’
metabolites? 04
epigenetic?

2010 2015 2020

- integrated omics* . multi-omics __i multi-view omics** . multiple terms . other terms***

Krassowski, Michal, et al. "State of the field in multi-omics research: From
computational needs to data mining and sharing." Frontiers in Genetics 11 (2020)




Trend in multi-omics research

€ Mean number of omics detected (95% Cl) D Top diseases & species mentioned in the abstracts
diseasea’clirlwical finding spelcies
cancer 786 human 697
carcinoma 132 mice 222
breast cancer 118 microbiota 129
inflammation 77 bacteria a5
cardiovascular B8 rat 67
diabetes 60 gut microbiome 62
colorectal cancer 59 plants 61
adenocarcinoma 53 escherichia 42
hepatocellular carcinoma 47 animals 31
glioblastoma 42 cattle 23
E Detected use of code and data versioning/distribution platforms
! s 7 14 17 95 & 116 245
Dryad Zenodo SourceForge CRAN GitHub
rl OSF B
GitLab @ ?
PyPI Bitbucket Other git Bioconductor
i 10 100
0% 10% 20%

E) Platform used for @ code M data € both

D) Proportion of publications

Krassowski, Michal, et al. "State of the field in multi-omics research: From
computational needs to data mining and sharing." Frontiers in Genetics 11 (2020)

Some challenges in MO analysis

1. Each MO data are big and needs MO-specific preprocessing

2. Heterogeneous and high dimensional data handling

3. Integration is not easy and each method focuses on a different issue

(need to decide what to look for)

4. Selection of appropriate ML method




Challenges| Large Search Space and High Dimensiona

Low sample,
High dimension problem

Genes b
B2M
HNRPLL
HPRT
|:> PSMB2
PSMB4
PPIA
PRPS1
PRPS1L1

PRPS1L3
PRPS2

3.2billion

4

3.2 billion DNA characters
4-character alphabet {A, T, G, C}

1 sample

35K genes

Search space

ENVIRONMENT

Behaviour, SOCI0eConomic 1acions,
mutribon, chrucal data, e history

— Salva. cral mucosa —. \-\;:‘-

- CBE — ; 5
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Blood, Serum — S )
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UGT (Urine) — s(g
— Jork (bopsy, aspirate) —
TR

.,/.’
-

DA Indiidual Genome— \//

GENETICS

https://www.mynewgut.eu/sites/default/files/3-Hadrich.pdf




Expectations from multi-omics data

* Interpretability

e Relations

sadA] SOIWO SS0JOE Suole|ol
xo|dwoo Bunusasaidal Jo Aljgy

2 relations per gene 3 relations per gene

Challenges| Multi-modal data adds extra dimension

Mutation
(DNA)

Methylation . mutation
(DNA) E -

miRNA
expression
(RNA)

Gene
expression
(RNA)

DNA sequence of a gene

Protein
expression
(RPPA)




Challenges| Multi-modal data adds extra dimension

Mutation
(DNA)

Protein expression (translation)

%

Gene expression (transcription)

Methylation
(DNA)

miRNA
expression
(RNA)

Gene
expression
(RNA)

Protein
expression

DNA sequence of a gene

Challenges| Searching for explainable omics causalit

Omics (genomics) features Clinical features

Mutation

* Molecular subtype (CMS1, 2, 3, 4)

(DNA)
* Hyper mutation status
Methylation .
(DNA) Cancer stage
« MSI (microsatellite instability) status
miRNA
expression « Pathology
(RNA)
* Gender
Gene
expression « Age
(RNA)
- Etc...

Protein
expression
(RPPA)

Colon cancer




ey,

Challenges| Searching for explainable omics causality.
|

-
L
E

Omics (genomics) features Clinical features Disease

“’;‘gﬁi‘;" « Molecular subtype (CMS1, 2, 3, 4)
* Hyper mutation status
. iati ?
Methylation associations? )
<;=, (DNA) Cancer stage
.0 + MSI (microsatellite instability) status
= miRNA b,
8 expression o « Pathology
" (RNA)
[72]
© s + Gender Colon cancer
ene
e
E; expression X~ . Age
(RNA)
- Etc...

Protein
expression
(RPPA)

o

. . . . >
Challenges| Searching for explainable omics causality
u

¥

Omics features Radiomics features Clinical features Disease

Nz‘gﬁ%” + Molecular subtype (CMS1, 2, 3, 4)
* Hyper mutation status
(é Me(tSml?)lon « Cancer stage
_‘g « MSI (microsatellite instability) status
® miRNA
8 expression « Pathology
3 (RNA)
© + Gender Colon cancer
I Gene
i expression + Age
(RNA)
« Etc...

Protein
expression
(RPPA)
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Some questions to ponder on

* |Is multi-omics better than single-omics?
* More data = higher quality of result?

* How much (at least) data do we need?
* What type of omics associate well together?

* What types of clinical features are explainable by MO?

* How do we associate the multiple-omics concepts?
* How do we analyze the integrated data?

* and how do we interpret the results?

Background| Two ways of integrating multi-omics dat

Gene expression Methylation level miRNA expression
(i xm) (j x m) (k x m)
o GO metho RIS iR, )
FFTIIOET oI EEEsasnn
Multi-dimensional SPISSSIID EREEEEES EEEnsnE .
« : [ iEsSscs] ety mir, AR
integration AITEIHST SEEanaay hC P
o, FFTEEIE3 Ot
bo P meth, IS
(most methods) o P
Gene expression Methylation level miRNA expression
(i % m) (i xm) (i xm)
o IR o ST 9 AT
; i O CHC
Multi-staged EESEEsnT EiEannna EERREEEE
integration i3 1 1 Oy ESSEsaNE
e s asss sl o AT )
Po P Po Pen Po P

Ritchie, Marylyn D., et al. "Methods of integrating data to uncover genotype—phenotype interactions."
Nature Reviews Genetics 16.2 (2015)

-11 -




MO Analysis Methods |

* https://github.com/mikelove/awesome-multi-omics

Factor analysis Clustering

Multi-omics correlation or factor analysis

Single-cell

Single cell multi-omics
.« 2018

Multi-omics networks

reviews and many more...

Ak

MO Factor analysis

* Factor analysis focuses on reducing dimensions for representative
learning on a more simple or lower space than the original data

* It’s advantage lies in finding strong signals and alleviate interpretation
of the result

* In addition to factor analysis, multi-omics is often analyzed using
multiview learning

e But why reduce dimensions?

-12 -




MO data characteristics

* MO data is highly complex, large and and heterogenous

Single-omics : a dataset of only bulk RNA-seq samples

> 15K genes

> 600 patients

The Curse of Dimensionality

* a) shows 20 data points on a 1 dimensional plane

* Adding a dimension causes the amount of data required to represent it to not
double but square!

* So, with 2 dimensions, we will need a space of at least 202 to represent the 20
data points

+ With 3 dimensions, 203 = 8,000 is at least needed to represent 20 data points!

a) 1D - 4 regions 5% b) 2D - 16 regions c) 3D - 64 regions
; ; : . e
o | ®°
o 0
15 » ® o o @
& ° e o o =
. ®
L] [ °
10 > : Py I 10
L °
e oo 5
5 e o % el
/ 0
] T 20
° @ oo mooow wo| 0o —— 1
0 5 10 15 o0 5 10 15 %A W A5 4 o

- 13 -



A brief overview of factor analysis

* Principal Component Analysis (PCA) and Non-negative matrix
factorization (NMF) are well known dimension reduction methods

* PCA concept

p k
error
A ~ X
n ~ n + (or residual)
Original data Approximated data (compressed)

PCA example

Lee, Daniel D., and H. Sebastian Seung. "Learning the parts of objects by non-negative matrix factorization."
Nature 401.6755 (1999): 788-791.

-14 -



A brief overview of factor analysis

* Principal Component Analysis (PCA) and Non-negative matrix
factorization (NMF) are well known dimension reduction methods

* NMF concept
Fy Ve ~ Wirxk) X Hkxn
0000@0O00 00
OO0 AAAO O A
OENEEEEROO EO
ommEmEOO ao " [cooee
OOCOAAAOD O A
©co0oo0o0o00o , 00
Vn ‘ W
data matrix  “explanatory variables” “regressors’,
“basis”, “dictionary”,  “activation coefficients”,
“patterns”, "topics’  “expansion coefficients”
Hustration by C. Févotte
NMF example
= NMF
Original
NMF
=41
\ =y A
7 i el
e T RS \ =
‘,-.\;~ e g -
- : 5 ] -] =
S s 3
~» OO et : {

Lee, Daniel D., and H. Sebastian Seung. "Learning the parts of objects by non-negative matrix factorization."
Nature 401.6755 (1999): 788-791.

- 15 -



A brief overview of factor analysis

The input to PCA and NMF are 2D data

A single-omics data is 2D data, whereas multi-omics needs a set of 2D data

Need to extend the factor analysis methods for MO analysis

Multi-view learning is also a good way for MO analysis
= Each omics is a view
= and the multi-omics (views) are co-trained or co-regularized
= at an early or late stage

Zhao, Jing, et al. "Multi-view learning overview: Recent progress and new challenges."
Information Fusion 38 (2017)

Multi-omics (factor) analysis methods

* jointNMF (2012)
* SNF (2014)

« MOFA (2018)

« MONTI (2021)
« MOPA (2023)

- 16 -



Methods | SNF — Similarity Network Fusion

A network based multi—omics integration method for detecti
patient groups with high omics—network similarity

* Omics: mRNA, methylation, miRNA

* Samples: 215 glioblastoma multiforme patients (and BIC, KRCCC,
LSCC and COAD cancer types) :

* Advantage:
* Not limited to certain omics type
* Very fast
* Works with small no. of samples
* Provides patient clustering function for patient module detection

* Disadvantage:

* Merges patients, thus does not pinpoint specific omics features (post-
processing required)

B
Sty

K Wang, Bo, et al. "Similarity network fusion for aggregating data types on a genomic
scale." Nature methods 11.3 (2014): 333-337.

Methods | SNF — concept

Input data Construct networks per omics Merge networks

[ I | ol

a  original data b patient simitarity matrices € Patient similarity networks d  Fusion iterations e siiﬁif.’.’,"mm 1
i Patients i
MRNA expression o ‘9 % . 9

. 0 Y A{ O
' @l i D@l

‘\\ /,1 ‘\\\ k3 ’/l

~~~~~~~~~

Patients
DNA methylation

. "

© Patients  Patient similarity:

mANA-based ——— DNA methylation-based - Supported by all data

-17 -



Methods | SNF — Results

Methylation

50 100 150 200
Patients

Patient subtype Similarly type

1 2 a
L mi“"“"w "

Survival (months) e veer
1 = 13 mANA

Methods | JointNMF

9? '.- "
* Based on the Non-negative Matrix Factorization (NMF) method, i:‘|
JointNMF discovers modules (or ranks) that show association between
different omics using ovarian cancer samples 1

* Omics: mRNA, methylation, miRNA

* Samples: 385 ovarian cancer patients (TCGA)

* Advantage:
* Reports a set of important omics-features

* Disadvantage:
* Number of ranks is difficult to determine

* Can become slow and require large memory with large samples and many
features

* May not work well with small no. of samples (constrained by the ranks)

Zhang, Shihua, et al. "Discovery of multi-dimensional modules by integrative analysis
of cancer genomic data." Nucleic acids research 40.19 (2012): 9379-9391.

-18 -



Methods | JointNMF — concept M =Samples

N; =Omics features (gene, methylat

M X N, MxN, M XN,

miRNA Expression  Gene Expression

modules

Omics specific coefficient matrices
Xi~W xH, H =KXN;

X,~W X H,
X;~W X Hj

Zhang, Shihua, et al. "Discovery of multi-dimensional modules by integrative analysis
of cancer genomic data." Nucleic acids research 40.19 (2012): 9379-9391.

Methods | JointNMF — Results

* Module associated omics features had high enrichment scores when using the
ovarian cancer dataset (K=200 modules, ~80% modules were biologically relevant)

A WModules W Random
4
[<d 0.8 1
(]
e 06 1
S
= 0.4 4 3 % » g
c
L 0.2 1
0 4 L
ME Combination
B c
0.0008 P = 0,000055 P=0013
—_— 0,020
o+
c 0.0008
CIEJ 0.015
< 0.0004
&) 0,010
=
c
Ll 0.0002) 0.005}
0.0000 0.000"
Random Gene sot Random Gene set
Protein Interaction Enrichment Cancer Gene Enrichment
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Methods | MOFA — Multi-Omics Factor Analysis

A factor analysis method for integrating MO data and
detecting important factors (or components) related to a
specific group

* Samples: 200 chronic lymphocytic leukaemia (CLL)

* Omics: mRNA, methylation, mutation, ex vivo drug response screens

* Advantage:
* Not limited to certain omics type
* Able to impute missing values

* Outputs important omics features with association to some interest

* Disadvantage:

* Slow with large number of samples and features

* Constrained number of max. factors

* Omics features are selected without correlation (post-processing required)

Argelaguet, Ricard, et al. "Multi-Omics Factor Analysis—a framework for unsupervised
integration of multi-omics data sets." Molecular systems biology 14.6 (2018): e8124.

Methods | MOFA — concept

Factorsg Variance decomposition by factor
gl ¥ N ”
> 025
= I B
0.05
tH o B
1 2 T

3 4 5 6

Factor
Annotation of factors
Inspection of loadings Feature set enrichment analysis
'4 Gene expression
@ 3 Cell cycle
E io Splicing regulabon —y
= mANA degradation
= 1 05 o
- Factors p-value
% é Imputation of missing values Inspection of factors
=

actor 1
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Methods | MOFA — concept

* Factor analysis (or PCA) is different from matrix factorization

* FAis based on variance and learns weights (eigen values) accordingly

Factors Variables (or genes)
te error terms (or variahce
F, that cannot be explained)
+ e,
F, + e;
+ e3

X1=b11XF1+b12XF2+el

Fl=W11XX1+W12XXZ+W13XX3+W14_X.X4_

Brief overview of PCA

* Finds the line that maximizes variance in the data

-21 -



Methods | MOFA — Results

A

Mutations
D=69

]
]

D=5000

I I ki

0.10
. 0.05
Methylation
D=4248
Drug '
response N=184
D10 h=184
12345678 910 0 01 02 03 04
Patients (N=200) Factor R2
D E . U-CLL, no tr12 + M-CLL, no tr12 E B RNA regulation [ cellular stress
® U-CLL,tr12  ® M-CLL, tr12 * missing B Immune Response | other
KLHLS — 1 A.;L 1 R
del11g22,3| =— adrsu : e =
b L -
MED12| ——= ] EPTOOY o) = 60
BRAF | ——a 0. | A, alatimg e
0 05 1 o Y L -
Absolute loading on Factor 1 5§ il s _:_ T A 2 40
& . k- 2
trisomy 12 | s— Lo : : . g
in =
del11g22.3| =———a 2] | = . 3 20
del14924.3| ——a . i e g
del13q14 | mm— LR . & I
" -3 ..- | L . —
gaini4q3z| = ' . 0+
0 05 1 -1 0 1 2 123456 7 8 9 10
Absolute loading on Factor 2 Factor 1 Factor

Multi-omics research

“Clinically observable plasticity and heterogeneity
occurs within, and not across, the major biological
subtypes of breast cancer”

TCGA, Nature 2012

..
Redoh .
Breast Cancer WK Luminal A
patients LI
.'ﬁ.ﬁ.
ililitils 11—
'i‘ﬁ'i‘,ﬁ'i‘ﬁ'ﬁ'@'i‘ LI
hybyhyhy hohd
M ilily HER2
RURTRTE B R
Data from

ifits
The Cancer Genome Atlas 'ﬁ‘!"ﬂ\'!l'ﬁ\ Basal
neE
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Some recent research topics on MO

9

¢ MONTI: A multi-omics non-negative tensor decomposition framework for the
integrated analysis of cancer subtypes (Frontiers in Genetics, 2021)

* MOPA: An Integrative Multi-Omics Pathway Analysis Method for Measuring
Omics Activity (in preparation)

* Parametric analysis on large-scale multi-omics data

* Graph based autoencoder for omics relation discovery (under development)

Data mining omics relationships that are specific to
some patient group = interpretation of result

Multi-Omics Data|

Cancer sample

GE: Gene expression
ME: Methylation
MI: miRNA expression

Gene —
Cancer cohort
L J | J L J
T | T
Group 1 Group 2 Group 3

- 23 -



Methods| MONTI Workflow

Jung, Inuk, et al. "MONTI: A Multi-Omics N

A B C D
Features Subtype specific
——— feature selection
g\ @
T e ‘
o
|-
Subtype
classification
; Feature selection
- w
N acompostion | & | 8@ @y and downsioam ___________... §
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Methods| Non-negative Tensor decomposition
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Data| Multi-omics Data of 10 Cancer Types and cIi
features

* From the TCGA portal, mRNA, methylation and miRNA omics data were
collected

* Also, associated patient clinical data were archived

CANCER TYPE Clinical_Type Patient_number Sample_Type Gene_number
COAD Colorectal_CMS 206 ['EMS1', 'CMS2', 'CMS3', 'CMS4]
STAD Molecular_Subtype 305 ['CIN', 'EBV', 'GS', "MSI']
BRCA subtype 595 ['Basal’, "Her2", 'LumA, 'LumB']
HNSC gender 298 ['FEMALE’, 'MALE']
TUMORSTAGE 320 [, '
14454
methylation_cluster 328 [1,2,3,4]
Gender 252 ['FEMALE’, "MALE']
methylation_signature 181 ['high_", 'intermediate_', 'low_"]
BRAF 490 [0, 1]
mrna_expression_cluster 221 [1,2,3]

Results| Clinical Feature Classification Accura
10 Cancer types

COAD (Colon adenocarcinoma)
Colorectal CMS
100

90
Stage rmethylation category

\
\
\

Pa!hologit/{ H\ypermutated
i

Pathologic S| Status

Pathologic M Molecular Subtype
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Results| Clinical Feature Classification Accura

10 Cancer types

BRCA (Breast invasive carcinoma) COAD
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Results| Omics combinations

 Different combinations show different results

L,

coAD STAD

Results| Subtype features

BRCA COAD

i
i
£gs

* Some features are
shared across the
subtypes

« The subtypes of .
BRCA, COAD and
STAD are well E

separated

-;
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Results| Is gene-level integration helpful? (1)

* Some tools are sensitive to omics-units
* In most tools, gene-level analysis showed lower performance

:##ﬁﬁ R

SNF SNF.g  MOFA  MOFAg iCluster iCluster g  PCA PCA g

Results| Is gene-level integration helpful? (2)

Total of 130 features selected FXYD5 gene and miRNA expression show
significant relationship

0.6
4 04Gene FxyDs (LumB
300 e}
54 400 0.2 r = -0.36692
Mples 500 6gp 0.0 p = 1.83178e-20
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Results| Is gene-level integration helpful? (3)

100 <
150
200 ;
Sampleg 250300 g

EXOCS (Basal) OLFML2B (CMS4) MAPK15 (EBV)

Results| Cancer-subtype associated genes

Case study Ranks Features Genes Subtypes St-Genes
Lurninal A 10 878
BRCA 120 26 2,385 e B 2 i
Her2 11 1,080
Basal 8 665
CMSt i 1,129
COAD 120 31 3.8 CHEs 2 L0
CMS3 1 1,473
CMmS4 10 704
CIN =] 1,234
7 5,461 GS 9 1.007
M8l 9 839
EBV 8 652
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Some questions |

* What clinical features can be explained by MO?

* How many samples are at least required for robust results?

* How many genes or MO features are needed? !..

* What happens if sample size is not balanced between groups?

Sample size estimation — miRNA

* For miRNAs, at least 19 samples per experimental group is needed to achieve a power
of 0.8 at a fold change of 1.5 with FDR < 0.1

Table 1
Both numbers of false-negative and false-positive results increase with a decreasing sample size. fi
It
S5vs5 10 vs 10 15 vs 15 20 ve 20 25 vs 25 '-'._\
Original dataset (no differences between patients and controls)
A, # of subsamples with > 10 miRNAs differentially expressed 145/10,000 127/10,000 93/10,000 36/10,000 9/10,000
B. Highest # of differentially expressed miRNAs (from 461) identified in one subsample 190 176 201 105 13
Perturbed dataset (100 miRNAs set to differentially expressed between patients and controls)
C. Mean # of miRNAs differentially expressed berween patient and control 47/100 73/100 85/100 91/100 93/100

3 =i
i
- |

T T
-3 72 2 3

o

Kok, M. G. M., et al. "Small sample sizes in high-throughput miRNA screens: a common pitfall for the
identification of miRNA biomarkers." Biomolecular detection and quantification 15 (2018)
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Sample size estimation — multi-omics

Data: STATegra — a comprehensive multi—-omics dataset of B—cell differe

Power vs sample size

No. of features Expected % of DE T Y
P
= &
b (=9
_E; —— RNA-seq
EN Bersl
& - ChiP-seq
= = Metabolomics
n == Proteomics
0.0 =

T T T T T
5 10 15 20 25 30 35

Sample size

Table 1 MultiPower parameters and results from the STATegra pilot data.

Omic numFeatb DEpercd Delta? Dispersion? minSampleSize optSampleSize Power

RNA-seq 12,762 0.4 0.61 0.32 5 16 0.999

miRNA-seq 469 02 0.50 0.46 14 16 0.680

ChlP-seq 23,875 02 135 096 10 16 0.898

DMNase-seq 52,788 02 0.51 0.49 6 16 0.627

Metabolomics 60 0.6 1.20 0.52 4 16 1.000
| Proteomics 1077 02 116 1.05 14 16 0.685

MultiPower results were obtained for the same sample size in all technologies, a minimum power per omic of 0.6, a minimum average power of 0.8, and a Cohen's d of 0.8,

numfeat number of omic features, DEperc expected proportion of DE features, deita difference of means 1o be detected, dispersion pooled standard deviation, minSampleSize sample size to achieve the

% minimum power per omic, optSampleSize optimal sample size for the experiment, power power reached with the optimal sample size,
y | *Parameter estimated by MultiPower.
bParameter provided by the user.

Tarazona, Sonia, et al. "Harmonization of quality metrics and power
calculation in multi-omic studies." Nature communications 11.1 (2020)

Benchmark tests for the questions

* 7 benchmark tests were designed and analyzed

* Sample size, feature numbers, preprocessing type, sample balance, noise
ratio, biological groups and omics combinations

# of Omics
features
# of samples ME 100%
Test case 19{100%)
ME 10% :
iV i Test case 16{80%)
Intarval{3) L
GE100% |— - — :
i Test case 11(20%)
TestcasaN i y00% Tost case 11(20%)
: Test cvtnz E
. Test case 1 Test case 2(2%)
Test case 1(1%)
Group1 Group2 Group 3 Group N Group i GE CNV ME Omics
(a) Sample size test (b) Feature selection test
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Benchmark tests for the questions

* 7 benchmark tests were designed and analyzed

* Sample size, feature numbers, preprocessing type, sample balance, noise
ratio, biological groups and omics combinations

# of samples

- .

- NORM =  Quantile normalization & 0-1 scaling Test case N-1
nlh-lh-nu ) H

lEi le.|

GL | Group1 Group2 Group3 Groupd Group5 Group6 Group

[ TCGA data |

(c) Preprocessing test (d) Balance test

(paper in preparation...)

Benchmark tests | Preliminary results — Sample size

* Using 10 cancer types, the performance started to converge with sample n > 60

BLCA BRCA COAD
1 e » 1 1
1 - o o
(1] o (1]
er ar a
(1] os 5
11 o 4
] a1 a1
a1 oy a2
L} ol al
¢ 0 '] 0
5 - . o ¢ LI I S T T I R S R N R I . S
H i e X wwan . s
a o o
L or or
{3 o8 L 1%
L1 oy (L]
04 e
0 03 a
02 a1
1 ol ol
0 ] [
LR - R A A - ® . v + ® . g + o ? 4 +*
LIHC LUAD SKCM
BLCA - Bladder Urothelial Carcinoma
BRCA - Breast invasive carcinoma
COAD - Colon adenocarcinoma
LIHC - Liver hepatocellular carcinoma
LUAD - Lung adenacarcinoma
SKCM - Skin Cutaneous Melanoma
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Benchmark tests | Preliminary results — Feature num

* The performance started to decline with # of features > 10~20%
* Feature selection is important

BLCA BRCA COAD

FELELECOLSELIFESIEF SO CCCECPIILPETIEF OO S G IS

e

Cluster score

FELEL L FIFIFISTEF TSSO EF R TS TS S ‘eesescee CEELETSSEF
LIHC LUAD  SKCM

Benchmark tests |
Preliminary results — Omics combinations

GE-CNV
B~ 430 GEME- T
[ CNV / \
GE-ME- Q@ 1. — . GE-ME-
M N S CNV-MI

- e

-

(c) Pathological stage
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Background | Pathway Analysis

GE, we can perform GSVA or SSSGEA)

* A list of multi-omics pathway analysis methods

* While there are a number of MO analysis tools, most output a list of genes or
accuracy score from clustering or classification results

- biological interpretation needs further work on the given results

* Asimple list of genes may not be enough for such purpose
* Especially, since the genes are selected from MO data (i.e., if genes selected from

Analysis target

Output

Method Supporting omics
MOPA multi-omics
MOGSA multi-omies
ActivePathways multi-omics
multiGSEA multi-omics
GSVA single-omics
GSEA single-omics
ssGSEA single-omics
Z-8Core single-omics

Single sample
Single sample
Group
Group
Single sample
Group
Single sample
Single sample

Scoring matrix
Scoring matrix
p-value

p-value

Scoring matrix
Scoring matrix
Scoring matrix
Scoring matrix

Methods| MOPA

* MOPA is a tool that scores pathway activity based on MO data for each sample
and each pathway

* The framework is very similar to GSVA or SSGEA but extended to consider MO

data
Fidiaes 1) iiarﬁl:;ag;a multi-omics
e 5 Samples
[ |E_N_ K )
S |0omm T ¢ @8 Ta8
SRR O @ &
- I Features Moasu : K I TE T |
R B, i [0 = é}muﬁ-or:louwmwuon LR B
L ) Nomnegative tonsor € | S g™y + ratwoyour per pathway
procossing 8 = %l' - positon & | @ 1 6 2) Multi-omics contributions
_ {_ :I 1 SN e g?;g per clinical feature group
|- -
f | 0000 o

Unit in omics Unit in genes Unit in pathways
GMT: Gene Matrix Transposed file format
GE: Gene expression

ME: Methylation

MI: miRNA expression
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Objective| mES and OCR metrics

* The major objective was to provide metrics that can interpret the
pathway results in context of multi-omics data

* For such matter, the multi-omics Enrichment Score (mES) and OCR i
(Omics Contribution Rate) were developed )

Methods| MOPA Workflow (Step 1~2)

Feature selection

[ Features
NN N ﬁ:l
(T T

Step 1
Samples

zdnoug jdnoug

Features ~
»

-,

S
L CDF

-y 4 LY

Muiti-Omics Enrichment Score Omics Contribution Rates
Features Selecting group specific feat
 ———

a5l

Sample

faead e
g?’%%% gl-“ﬁ*g*g
«: 9 ©°

Omics contribution rates (OCR) per group
-

i -

o

Group1 Group 2
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Methods| MOPA Workflow (Step 2~3)

Output b |
Multi-Omics Enrichment Score Omics Contribution Rates
Features Selectigg sra;p specific features
=" Group 2
g featwes, . [SEE7 ot ';ﬁ g 'fﬂg
jomd s el < de alee f.-
S & & | o
‘;- Features :.' Features |
Q Genes g g 803 gl?,g,gg
) g o 5} ® OO0
o 0

Omics contribution rates (OCR) per group

Step 3

* MOPA was used to analyze 9
cancer types including 95 clinical
features (e.g, subtype, cancer
stage, gender)

* Some clinical features are well
explained while some showed
poor classification performance

* |In the majority features, MOPA
showed higher or equal
performance to competing
methods
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Results | Multi-omics combinations

COAD subtype LUAD methylation_signature
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Results | Features dete

TCGA-COAD dataset

Pathways

cted by MOPA

TCGA-STAD dataset

CMs1 CMs2 CMs3 CMs4 CIN

1.0 0~
0.8
0.6

-04

EBV GS MSI
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Results | Features detected by MOPA

TCGA-COAD TCGA-STAD
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Results | Use Case Study — COAD

(A) Salivary secretion pathway

" g ME
GE
GE
GE
: f i

(B) Staphylococcus aureus infection pathway
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pathway

(C) Compiement and coagulation cascades
ME
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. GE (gene expression)
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Survival plot
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pathway aureus infection
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Group with high mES showed significantly
lower survival for the three pathways.

Time
Complement and

coagulation
cascades pathway

Results | Use Case Study — COAD

ME

GE

CMS1

TGF-beta signaling pathway

ME
GE
GE Mi
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omics expression

BN GE (gene expression)
e ME (methylation level)
M (miRNA)
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. type
1.008-02 < p <= 5.00e-02

*:1.00e-03 < p <= 1.00e-02

. 1.00e-04 < p <= 1.00e-03

2 p <= 1.00e-04

CMS1 CMS52 CMS3 CMS54
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Results | Use Case Study — COAD (MO pathway netw

(A) CMS1 »  (B)CMS2 . (C) CMS3 D  (D)CMs4
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Results | Use Case Study — STAD

(B) GS
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