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Curriculum Vitae

Speaker Name: Hyunju Lee, Ph.D.

» Personal Info

Name Hyunju Lee
Title Professor
Affiliation Gwangju Institute of Science and Technology

» Contact Information
Address 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005

Email hyunjulee@gist.ac.kr
Phone Number  062-715-2213

Research Interest

Bioinformatics, Machine learning, and Text Mining

Educational Experience

1997 B.S. in Computer Science, KAIST, South Korea
1999 M.A. in Computer Engineering, Seoul National University, South Korea
2006 Ph.D. in Computer Science, University of Southern California, USA

Professional Experience

2006-2007 Post-doc Research Fellow, Brigham and Women's Hospital and Harvard Medical
School, USA
2007- Full-time lecturer, Assistant, Associate, Full Professor, Electrical Engineering and

Computer Science, Gwangju Institute of Science and Technology

Selected Publications (5 maximum)

1. Yeonghun Lee and Hyunju Lee. Integrative reconstruction of cancer genome karyotypes using
InfoGenomeR. Nature Communications, 12:2467, 2021.

2. Ho Jang and Hyunju Lee, Multiresolution correction of GC bias and application to identification
of copy number alterations, Bioinformatics, 35(20), 2019.

3. Jeongkyun Kim, Jung-jae Kim, and Hyunju Lee, DigChem: Identification of disease-gene-
chemical relationships from Medline abstracts, PLoS Computational Biology 15(5), 2019.

4. Jihee Soh, Hyejin Cho, Chan-Hun Choi, and Hyunju Lee, Identification and Characterization of
MicroRNAs Associated with Somatic Copy Number Alterations in Cancer, Cancers, 10(12):475,
2018.

5. Bayarbaatar Amgalan and Hyunju Lee, DEOD: uncovering dominant effects of cancer-driver

genes based on a partial covariance selection method, Bioinformatics, 31(15), 2015.
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Genomic variants

* Protein-coding regions make up around 1% of the human genome

* ENCODE suggests (Nature 489, 57-74 (2012))

82% of the human genome was functionally important having biochemical activity
* ~20 % of the genome is associated with DNase hypersensitivity or transcription

factor binding (common features for identifying regulatory region)

L]
* How coding and noncoding variation can impact gene function
Variant Location Transcript Map Transcript Product Transcript description Potential Outcome
v ,\/_/ Synonymous/ Homeostasis/
Coding A
x . b — Missense/ Altered Product/
(standard interpretation) 23 Nonsense Loss of function
—
——
Promoter/Enhancer/ v @?f_/,‘:—z Over/ T Tn—
Looping/cis-regulatory IncRNA Pt - — Under expression g expression patterns
(RSN - /\’__/r—_/,
f_/
,__/
Splice Donor/Acceptor v v e Skipped exon/ Altered product
Branchpoint 4 ,_\,,_/, Retained intron Nonsense Mediated Decay
;’;SB| ?-E’g%loiii-‘ﬂ Gloss and Dinger Experimental & Molecular Medicine (2018) 5%0 97

Noncoding variants

* Mutations in noncoding variants can lead to gain or loss of transcription
)
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Mutations in miRNA l
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Nature Reviews Genetics volume 17, pages93-108(2016)




Coding vs. noncoding variants

* Prediction of the effect of a coding variant on protein
function
* ‘sorting tolerant from intolerant’ (SIFT) algorithm
* ‘polymorphism phenotyping’ (PolyPhen) tool
* Protein sequences have been highly conserved throughout evolution
* Based on a multiple-sequence alignment

* Regulatory elements
* Conservation is a less important signal when interpreting variants

* Effects of regulatory variants have quantitative rather than qualitative
effects on gene expression

* Same variant may have a larger or smaller effect in different tissues, at
different developmental stages and even in different individuals.

OB ERuT YR Nature Methods volume 11, pages294-296(2014) ~
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Computational methods to prioritize non-
coding variants with functional effects

Method used to build model

CADD
GWAVA
DeepSEA
DanQ
DeFine

DeepFun

OB ERYzE=ms

2014 Support vector machine
2014 Random forest algorithm
2015 Deep learning, CNN
2016 Deep learning, CNN, RNN
2018 Deep learning, CNN
2021 Deep learning, CNN

Machine learning model (GWAVA)

e GWAVA: Genome-wide annotation of variants

* Prioritization of noncoding variants by integrating various genomic and
epigenomic annotations

* https://www.sanger.ac.uk/tool/gwava/

Various
genomic and
epigenomic
information

§aoBigRYIR=a

)

Modified Binary classification
Random Forest classifier (Disease-implicated SNVs
vs. control SNVs)

(SNVs : single-nucleotide variants)

Nature Methods volume 11, pages294-296(2014) °
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Machine learning model (GWAVA)

* Disease-implicated SNVs

* All variations annotated as ‘regulatory mutations’ from the public release
of the Human Gene Mutation database (HGMD)

e Control sets

* Common (minor allele frequency 21%) SNVs from the 1000
Genomes Project (1KG)

* First set: a random selection of SNVs from across the genome in
order to sample overall background.
* Second set: matched for distance to the nearest TSS genome-wide.

* HGMD variants are not distributed randomly across the genome; 75% lie within
a 2 kilobase (kb) window around an annotated transcription start site (TSS)

* Third set: all 1KG variants in the 1 kb surrounding each of the
HGMD variants.

:SBI SR YB YR Nature Methods volume 11, pages294-296(2014)

Machine learning model (GWAVA)

* Genomic and epigenomic annotations
* Open chromatin: DNase-seq data from ENCODE

* Transcription factor binding: ChIP-seq peak calls for 124 TFs from
ENCODE

* Histone modifications: ChIP-seq peak calls for 12 modifications from
ENCODE

* RNA polymerase binding: ChIP-seq peak calls from ENCODE
* CpGislands: Predictions from Ensembl

* Genome segmentation: discrete states such as transcription start sites,
gene ends, enhancers, transcriptional regulator CTCF-binding regions
and repressed regions

* Conservation: Genomic evolutionary rate profiling (GERP) scores from
mammalian alignments

* Human variation: Variants and allele frequencies 1000 Genomes
Project phase 1 data

* Genic context: distance from any base annotated as exonic, intronic,
coding sequence, 5’ or 3’ untranslated region, splice site, or start or
stop codon in any transcript

:SBI SR LTI Nature Methods volume 11, pages294-296(2014)
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Machine learning model (GWAVA)

* Genomic and epigenomic annotations

* Alarge matrix with a row for each variant locus and a
column for each possible annotation.

* The column type depending on the annotation class

(i) the number of cell lines in which the variant locus overlaps
some annotation, such as DNase | hypersensitive sites and
ChlPseq peaks

(ii) a present-absent binary flag

* Ex) whether this region is ever in an annotated intron
(iii) a continuous value for genome-wide annotations

* Ex) conservation and distance to the nearest TSS

A part of example annotations

chr end start

DNase

E2F1

H3K27ac

cpg_isla

H3K27me3
nd

gerp |tss_dist TSS |[INTRON| STOP

UTR

rs111626726 | chr3 | 1.5E+08 | 1.5E+08

12

12

1 1 3.18 447 6 1 0

faSBigReBEA

Nature Methods volume 11, pages294-296(2014)

Machine learning model (GWAVA)

* A modified version of the random forest algorithm

* Three classifiers using all available annotations to discriminate between
the disease variants and variants from each of the three control sets

1.0 1

0.8 1

o
o

True positive rate
o
>

0.2 4

faSBigReTR R

B Unmatched (AUC = 0.97)
@ TSS (AUC = 0.88)

@ Region (AUC = 0.71)
Chance

0.2

04 0.6 08 1.0
False positive rate

Nature Methods volume 11, pages294-296(2014)
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Chromosomes are composed of DNA tightly-wound
around histones

‘:‘fm the simplest level, chromatin 2nm,
is a double-stranded helical DNA do_l_:ble helix
structure of DNA. =Y [ N
AT i v s A A AV W W
<V CT LD UHIUNN L UIV Uy ‘I! j,/ﬂy "-II.{\?. i A\

- - -
- ‘// -// ‘//' N Each nucleosome consists of

3
‘= eight histone proteins around
> 5, 3\ which the DNA wraps 1.65 times.

DNA is complexed with histones
to form nucleosomes.

Nucleosome core of 2
eight histone molecules

A chromatosome consists
of a nudleosome plus the

H1 histone
& ‘ H1 histone.
... that forms loops averaging 4
300 nm in length. _ | E
Chromatosome

300 hm 11 nm

5
The nucleosomes
fold up to produce

a30-nm fiber...
30 nm
7 8 1400 nm
© 2013 Nature Education Adapted The 30‘1":'51’:7 A ;‘::‘ °°ig"9 0“:9 Zhs')nm‘d
. P P compressed and fol to r produces the chromati
from Pierce, Benjamin. Genetics: A produce a 250-nm-wide fiber. of a chromosome.
Conceptual Approach, 2nd ed.
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Histone and transcription

Nucleosomes

Linker DNA

H1 Linker DNA

Nature Reviews | Genetics

Histone proteins need to be modified and DNA needs to be
released for transcription to take place.

5D BISLANDGE X H B} 15
FaSBi ERE YL

Epigenetic mechanisms

EPIGENETIC MECHANISMS HEALTH ENDPOINTS
are affi by these and pr « Cancer

= Development (in utero, childhcod) = Autcimmune disease

= Er 1 ch = Mental disorders

= Drugs/Pharmaceuticals = Diabetes

= Aging
= Diet

‘ |E=Ac1‘on

CHROMOSOME (> METHIYE QHOVE /
/
DNA / \‘
N
<
| ' DNA methylation <

and activate or repress genes.

| Methyl group (an epigenetic factor found
\ in some dietary sources) can tag DNA
HISTONE TAIL

DNA

Histone modification

The binding of i ic f: to “tails™
Histones are proteins around which | alters the extent to which DNA is wrapped around
DNA can wind for compaction and DNA ir gene inacti histones and the availability of genes in the DNA
gene regulation. | to be activated.
"JSBi I AU A B8] http://commonfund.nih.gov/epigenomics/figure.aspx
od Maraan Sociaty for Bioinfommatics




Histone modification DNA methylation

Chromatin structure

NH, NH,

Methyl groups attach

CHy
£ 2 N Methyltransferase
to CpG islands regulating R N
gene expression N * ,g
H

(o} N fo)

e acetylation
T4 ail methylation
2 R < ubiquination

% H4 tail ?
ot @I sumoylation

Decreased or no methylation
in active gene expression

+ H3 il g IEI phosphorylation
we) | “3
' Methylation inhibits
gene expression
:SBI SR AH A 35| Nevin C and Carroll M, J Hum Genet Clin Embryol 2015, 1004

Chromatin
Immunoprecipitation

Sample fragmentation
Immunoprecipitation

* Chromatin Immunoprecipitation (ChIP): a technique that

permits to “freeze” the protein-DNA bonds inside the cell o AN i
nucleus, and the extraction of the DNA bound by a TF ChIP TG Histone
.re o S AN
SpeCIflc prOteIn x l DNA purification ChIP
Lgc rfpalr a;d T T = —
. . .. . adaptor ligation olyA tailing
* Antibodies are used to select specific proteins or / 1 \
nucleosomes which e.nrlches for DNA-fragments that are
bound to these proteins or nucleosomes y g ——— . — e
uster Amplification
generation l on tr:padst l
(bridge PCR) {emulsion PCR)
* Selected fragments can be either hybridized to a ] ’ X \S\‘[/’:/
. . B0 NI YEuinge
microarray (ChIP-chip) or sequenced on modern NGS fﬁ'\ 7R
platform (ChIP-seq). Helicos
llumina ingle-molecule
. . ISewe'wclng Roche ABI ;g,pnnng
* Thus, we can extract DNA bound in vivo by ith everse Pyrosequencing g with eversie
* Modified histones R

* Specific transcription factors
* RNAPolll

Nature Reviews | Genetics

To® + & AHCH 2 & &) 18
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Regulation

* Transcription factors (TFs)

- Regulate gene transcription
by binding to specific DNA
elements such as promoters,
enhancers, silencers.

&= SBl ‘}qgcﬁmimﬂ

Saciaty for Riainfarmatic

cobinding ‘m/ -—‘/ tethered

P
TF binding
scenarios

A
DNA methylation

Promoter
DHS

LY
Histone modification

e
SV

WA

ACTAGTuWAm ANJ.‘ TGTF cc

Distal DHS correla(ed
with promoter DHS

Distal DHS

Disease-associated SNP
DNase |

footprint,
DNase | cleavage

------ SNP.
ACTAGTGC S GCG C}\ATGTA"R

(o {1

DNA sequence

Motifl TF binding

affecting ACTAGTGCGCATG

Motif2
NFSM r\i
GCG {CAATGTACA
T wan
) VL

A ONase | Hypersensitive site (DHS)
‘  ChiP-seq peak for Histone marks accociated with transcriptional activation
I\ ChiP-seq peak for transcription factor

wxen Gene with transcription direction

¥ Disease-associated SNP

® Tanscription factor
B

Genomics Proteomics Bioinformatics 11 (2013) 135-141 {4

Regulation

e Chromatin accessibility

- Hallmark of regulatory DNA regions

- characterized by DNase |
hypersensitivity (DHS)

- DHSs are regions of chromatin that
are sensitive to cleavage by
the DNase | enzyme.

DNase-Seq analysis

HS HS HS HS

l Dhasa |
pe - hyparsansitive sies
redeased by \
= %
cleavage
Ganomic DNA sequence

§aoBigRYIR=a

cobinding ‘@’ j/ tethered

e
TF binding
scenarios

A
DNA methylation

Promoter
DHS

Distal DHS covrela(ed
with promoter DHS

Distal DHS
Distal DHS,

Disease-associated SNP

DNase |

footprint.
DNase | cleavage

DNA sequence
Motif1

affecting
TF binding

ACTAGTUWACC SANTG TFTACC

ACTAGTGCGCATGCGCAATGTACA

(TG

L
Histone modification

Motif2
/\JﬂﬁC\’AHATJ o

Motif1

A ONase | Hypersensitive site (DHS)
‘ . ChiP-seq peak for Histone marks accociated with transcriptional activation

/. ChiP-seq peak for transcription factor

wexn Gene with transcription direction

¥  Disease-associated SNP

® Tanscription factor
L]

Genomics Proteomics Bioinformatics 11 (2013) 135 - 141 20
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DNase | footprinting

* DNase | footprinting detects DNA sequences that are protected from
cleavage by DNasel because they are bound by regulatory factors.

TS

Promoter
DHS

Distal DHS correlated I

with promoter DHS

Distal DHS

Distal DHS,

A DNasel Hypersensitive site (DHS) #  Disease-associated SNP
_‘_ ChiP-seq peak for Histone marks accodiated with transcripional activation
L ChiP-seq peak for transcription factor SEJ’ Transeription factor
rrn Gene with transcription dicection
%’:SBI a;}q-)gcgg_l;f_ﬁllﬂ Genomics Proteomics Bioinformatics 11 (2013) 135-141 21

DNase | footprinting

* DNase | footprinting of K562 cells identifies the individual
nucleotides within the MTPN promoter that are bound by NRF1.

Chr7: 1356620001
— — A TPN

NRF1 ChIP-seq -
(K562 cells)
200 bp —
DNase I-seq l.
(K562 cells)

o -
- -
- -
- e
- e
- .
= -

— A TPN

(per nucleotide) -

2Dbpl—||

Vertebrate
conservation
(phyloP)

Mo7  ybiH

v
L=t LI
- -
- -
- " T e

DNA seguence -ACTAGTGC CATGC CAATGTACA-
NRF1 motif '|' C

Ia® + & AHH 24 H S} 22
faSBi R yR

-11 -




Noncoding variants and TF binding

1SS
Promoter “\f‘
DHS i
ACTAGTGTMTACCIGAMIGTGTACC
Distal DHS correlated | 1 A .
with promoter DHS o s Motif2
Distal DHS sueyaalleTy
Distal DHS,
Disease-associated SNP
DNase | S
footprint, { r,ﬂ_
DNase | cleavage 9 |
T 0 SNP. o lpese st SR
DNA sequence  ACTAGTGCGCALJSCGCAATGTACA  affecting ACTAGTGCGCATGCGCAATGTACA
i ; i
Motif1 a TEbinding ( ( T ( ( Motif1
A ONase! Hypersensitive site (DHS) #  Disease-associated SNP

‘ ChiP-seq peak for Histone marks accociated with transcriptional activation

(’ Transeription factor
=

A ChiP-seq peak for transcription factor

xxn Gene with transcription direction

Genomics Proteomics Bioinformatics 11 (2013) 135-141 23

Noncoding variants and TF binding

* DNase | footprints mark sites of in vivo protein occupancy.
* Effect of T/C SNV rs4144593 on protein occupancy and chromatin accessibility.

T or C allele-specific DNase | cleavage profiles from ten cell
lines heterozygous for the T/C alleles at rs4144593.

DNase | cleavage profiles from 18 cell lines
homozygous for the C allele at rs4144593 and
one cell line homozygous for the T allele at

rs4144593.
. Cell types heterozygous : :* Cell types homozygous
T/C SNV rs4144593 ;. TorCat SNV rs4144593

1 Chr9: 36399995 1 Chr9: 36399995

CAGAGAGACAACAGA

PN .
- T T ek
k,@)& W - NF1/CTF1 motif NF1/CTF1 motif

C/C homozygotes
udioojoN

T allele
C allele

1 Chr9: 36399995

T ACAACAG

NF1/CTF1 motif NF1/CTF1 motif

AGACAACAGA

T allele reads

1uudlood Sos

T/T homozygotes

Neph, S. et al. Nature 489, 83-90 (2012) 24
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* Introduction to noncoding variants
 Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

e Deep learning methods to prioritize noncoding variants
* Convolutional neural network

1s® | Bl AHDE 2] B 5} 25
P o Rk e

A typical convolutional neural network layer

* Convolution stage

Next Layer .
111
Convolutional Layer 1T
Pooling stage
t RS | | A PV
Detector stage:
Nonlinearity
t R I | P
Convolutional
stage * Nonlinearity function
* Rectified linear unit (ReLU)
Input Layer °. Tanh, etc.
* Pooling stage
* Max pooling
* Average pooling, etc.
Z.° SBI B ANCI M B 53| Goodfellow et al., Deep Learning 26

- 13 -




LeNet-5 (1998): An example of 2-D convolution

. C3: 1. maps 16@10x10
INPUT gégg:gge maps S4: 1. maps 16@5x5
32x32 S2: 1. maps
6@14x14

Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, Y.; Bottou, L.; Bengio, Y. & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE. 86(11): 2278 - 2324.

a.S T BIR A M B ELE
faop ERgsEEs

Full conr{ection ‘ Gaussian connections

27

LeNet-5 (1998): An example of 2-D convolution

C3: 1. maps 16@10x10
INPUT C1: feature maps S4: 1. maps 16@5x5

32«32 S4¥28x25 S2: 1. maps
S@1ax14 rr r'_
N
lT—

CS:layer g jayer OUTPUT
120 P s 10

I
| Full connection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

Average pooling:2*2
INPUT:32*32*3 filter 1:5%5 28*28*6 (stride:2*2)

e L
stride: 1*1) Hy | Hyy | Hos | Hua

o [ s | ha | lis 1 His = 14*14*6

fu | fi2 | fus | fua | fus —

— Hyy [ Hyy | Hys [ Hag | Hys

il Bl el | foo | fso | fsa | fsa | fss 1 _—_ »
[ x fter2 SR
1% filter 3 = 1T
—: *  filter 4 = -__:—
— | * filter5 1 = e s s e

II II II II II II II II I I * fllter 6

§aoBigRYIR=a

28
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Contents

* Introduction to noncoding variants
 Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods to prioritize noncoding variants
* Convolutional neural network

* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

1s® | Bl AHDE 2] B 5} 29
FaSBi ERE YL

Sequence-based algorithmic framework
DeepSEA (deep learning—based sequence analyzer)

Output:
variant functionality

. . . . e e prediction unctional-variant prediction
* Goal: Predict with single-nucleotide sensitivity et t“’““
Input
the effects of noncoding variants on o logalee Tialiel A)
2 iul; chromatin 30
transcription factor (TF) binding, DNA Bt z-gE I
1.
accessibility and histone marks of sequences g 1
Compare
1. Simultaneously predict large-scale oHs Trbindng  Histone marks
Output:
HE. HH H H predicted allele- Allele T OOOOOOOOOOO
cf-1ro-mat|n profiling dctat.a,. |nclud|n.g TF Becamonan . 50000000000
binding, DNase | sensitivity and histone- -
mark profiles e -
2. Predicting allele-specific chromatin Foaamap Epgonnics - {“’“‘”1"332“5‘52‘;3“'”’“
chromatin profiles
profile and chromatin effect R
Input
3. Those predictions are used to estimate o veenes S B—
(1,000 bp) . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT. . .
functional effects of noncoding variants Varent posiion

AN ok L Nat Methods. 2015 October; 12(10): 931-934 -,
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Datasets

* Genome-wide chromatin profiles

* From the Encyclopedia of DNA
Elements (ENCODE) and
Roadmap Epigenomics projects

* 690 TF binding profiles for 160
different TFs, 125 DNase |
hypersensitivity (DHS) profiles
and 104 histone mark profiles (a
total of 919 peak sets).
(Supplementary Table 1)

* 521.6 Mbp of the genome (17%)
were found to be bound by at
least one measured TF and were
used as a regulatory information—
rich and challenging set for
training the DeepSEA regulatory
code model

ol

2® SBI E}ﬂg%%‘imﬂ

-
raan Saciaty for

136 Genomics Proteomics Bioinformaries 11 (2013) 135-141
Table I Summary of ENCODE experiments
Experiment Description

DNA methylation

TF ChIP-seq

Histane ChIP-seq

DNase-seq

DNase footprint

MNase-seq
3C-carbon copy (5C)
GWAS SNP targeting

In 82 human cell lines and tissues:

A549. Adrenal gland, AG04449, AG04450. AGD9309. AG09319, AG10803, AoSMC, BE2 C. BJ. Brain, Breast.
Caco-2, CMK, ECC-1. Fibrobl, GM06990. GM 12878, GM12891, GM12892, GM 19239, GM19240, H1-hESC,
HAEpiC, HCF. HCM, HCPEpiC, HCT-116. HEEpIC, HEK293, HeLa-83, Hepatoeytes, HepG2, HIPEIC, HL-60,
HMEC, HNPCEpiC, HPAEpiC, HRCEpiC, HRE, HRPEpiC, HSMM. HTR8svn, IMR90, Jurkat. K562, Kidney,
Left Ventricle, Leukocyte, Liver, LNCaP, Lung, MCF-7, Melano. Myometr, NB4, NH-A, NHBE. NHDF-neo, NT2-
D1, Osteoblasts, Ovear-3, PANC-1, Pancreas, Panlslets, Pericardium, PFSK-1, Placenta, PrEC, ProgFib, RPTEC,
SAEC, Skeletal muscle, Skin, SkMC, SK-N-MC, SK-N-SH. Stomach, T-47D. Testis. U87, UCH-1 and Uterus

A total of 119 TFs:

ATF3, BATF, BCLAFI, BCL3. BCL11A, BDP1, BHLHE40, BRCAIL BRFI1, BRF2, CCNT2, CEBPB, CHD2,
CTBP2, CTCF, CTCFL, EBFI, EGRI, ELFI, ELK4, EP300, ESRRA, ESRI, ETSI, E2F1, E2F4, E2F6, FOS,
FOSL1. FOSL2. FOXAL FOXA2. GABPA, GATAL. GATA2. GATA3. GTF2B. GTF2FL. GTF3C2, HDAC2,
HDACS, HMGN3, HNF4A, HNF4G, HSF1, IRF1, IRF3, IRF4, JUN, JUNB, JUND, MAFF, MAFK, MAX,
MEF2A. MEF2C, MXI1. MYC, NANOG. NFE2. NFKBI. NFYA, NFYB. NRFI. NR2C2, NR3Cl. PAXS, PBX3.
POLR2A. POLR3A. POLR3IG. POU2F2, POUSF1, PPARGCIA. PRDMI, RAD2I. RDBP, REST, RFX5, RXRA.
SETDBI. SIN3A, SIRT6. SIX5, SMARCA4, SMARCBI. SMARCCI, SMARCC2, SMC3. SPII. SP1. SP2.
SREBF1. SRF, STATI. STAT2, STAT3, SUZ12, TAFI, TAF7, TALL, TBP, TCFTL2, TCF12, TFAP2A. TFAP2C,
THAPIL, TRIM28, USF1, USF2, WRNIPL, YY1, ZBTBTA, ZBTB33, ZEBI, ZNF143, ZNF263, ZNF274 and ZZZ3
A total of 12 types:

H2A.Z, H3K4mel, H3K4me2, H3K4me3, H3K%ac, H3K9mel, H3KY9me3, H3K27ac, H3K27me3, H3K36me3,
H3K79me2 and H4K20mel

In 125 cell types or treatments:

BISET, A549, AG04449, AGO4450, AGO9309, AG09319, AGIOB03, AoAF, AoSMC/serum_free_media, BE2 C, BI,
Caco-2, CD20, CD34, Chorion, CLL, CMK, Fibrobl, FibroP, Gliobla, GM06990, GM 12864, GM 12865, GM 12878,
GMI12891, GM 12892, GM18507, GM 19238, GM 19239, GM 19240, H7-hESC, HYES, HAc, HAEpIC, HA-h, HA-sp,
HBMEC, HCF, HCFaa, HCM. HConF, HCPEpiC, HCT-116, HEEpiC, HeLa-83, HeLa-83_IFNadh, Hepatocytes,
HepG2, HESC, HFF, HFF-Myc, HGF, HIPEpiC, HL-60, HMEC, HMF, HMVEC-dAd, HMVEC-dBI-Ad,
HMVEC-dBI-Neo. HMVEC-dLy-Ad. HMVEC-dLy-Neo, HMVEC-dNeo, HMVEC-LBIL. HMVEC-LLy.
HNPCEpiC, HPAEC, HPAF, HPDE6-E6E7, HPALF, HPF, HRCEpiC, HRE, HRGEC, HRPEpIiC, HSMM,
HSMMemb, HSMMtube, HTR8svn, Huh-7, Huh-7.5, HUVEC, HVMF, iPS, Ishikawa_Estr, Ishikawa_Tamox,
Jurkat, K562, LNCaP, LNCaP_Andr, MCF-7, MCF-7_Hypox, Medullo, Melano, MonocytesCD14 + . Myometr,
NB4, NH-A, NHDF-Ad. NHDF-neo, NHEK, NHLF, NT2-D1, Osteobl, PANC-1, PanlsletD. Panlslets, pHTE,
PrEC, ProgFib. PrEC, RPTEC, RWPE], SAEC. SKMC, SK-N-MC, SK-N-SH_RA_ Stellate, T-47D, Th. Thl, Th2,
Urothelia, Urothelia_UT189, WERI-Rb-1, WI-38 and WI-38_Tamox

In 41 cell types:

AG10803, AoAF, CD20+, CD34+ Mobilized, [Brain, fHeart, MLung, GM06990, GM 12865, HAEpiC, HA-h, HCF,
HCM. HCPEpIiC, HEEpiC, HepG2. HT-hESC. HFF, HIPEpiC. HMF, HMVEC-dBI-Ad. HMVEC-dBI-Neo.
HMVEC-dLy-Neo, HMVEC-LLy, HPAF, HPALF, HPF, HRCEpiC. HSMM, Thl. HVMF, IMR90. K562, NB4,
NH-A, NHDF-Ad, NHDF-neo, NHLF, SAEC. SkMC and SK-N-SH RA

In GMI12878 and K562

In GMI12878, K562, HeLa-83 and HI-hESC

296 noncoding GWAS SNPs were assigned a target promoter

Nat Methods. 2015 October; 12(10): 931-934 31

Datasets for chromatin profile prediction

* Input

* From 521,6 Mbp sequences (the human GRCh37 reference genome)

e 1,000-bp DNA sequence
* Centered on each 200-bp bin

e 400-bp flanking regions at the two sides for extra contextual information

* One hgt encoding

One hot encodin

e Qutput
¢ 919 chromatin features

iRt

@]

e A chromatin feature was labeled 1 if more than half of the 200-bp bin is in the peak region and 0

otherwise.
* Example:

*  Whether DNase-seq in a cell-line T-47D has a peak in the 200-bp bin
*  Whether TF FOXAL in a brain cell-line has a peak in the 200-bp bin

faSBigReBEEAs)

Nat Methods. 2015 October; 12(10): 931-934 _,
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Training and Test sets

e Test: Chromosome 8 and 9

e Validation:

e 4,000 samples on chromosome 7 spanning the genomic
coordinates 30,508,751-35,296,850.

* Hyperparameter selection

* Training: Rest of the autosomes

Nat Methods. 2015 October; 12(10): 931-934 .,

N o vk~ w N

DeepSEA model
configuration

sigmoid

Fully connected 925

Model Architecture Fully connected 925
Convolution layer ( 320 kernels. Window size: 8. Step size: 1) Flatten (960*53)
Pooling layer ( Window size: 4. Step size: 4) 960*'“"“
. . . . 960 convolution
. : 8. : " ((1,000-7)/4-7)/4-7
Convolution layer ( 480 kernels. Window size: 8. Step size: 1) Kernels Convoluton 000-7)/47)

Pooling layer ( Window size: 4. Step size: 4) 480

((1,000-7)/4-7)/4
pooling window size:4

Convolution layer ( 960 kernels. Window size: 8. Step size: 1)

Fully connected layer ( 925 neurons ) 480

480 convolutien -7)/4-7)

Sigmoid output layer kernels: 320*8

320

L {1,000-7)/4
pooling Window size:4

320 RelU
7
320 conyolution
kernels: 4*8 convolution window size:8

4| input

1000

1,000

Nat Methods. 2015 October; 12(10): 931-934 ,
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DeepSEA model
configuration

Fully connected 925

* Training of the DeepSEA model.

objective = NLL + 4, [|W |3 + A, ||H' || Fully connected 925

Flatten (960*53)

NLL ==Y ¥log(¥; fi(X) + (1= Y)(1 = f,(X*))

s !

o . 960 convolution
* s:index of training samples Kernels|480*8

* t:index of chromatin features.

* Y7:0,1 label for sample s, chromatin feature t.

*  f; (X5): the predicted probability output of the model for
chromatin feature t given input X5.

((1,000-7)/4-7)/4-7
onvolution window size:8 layer5

480

(T,000-7)/4-7)/4
pooling window size:4 layer4

480
. . 480 convolutien -7)/4-7)
* Regularization Parameters: kernels: 320*8
* L2 regularization (A,): 5e-07 320
e L1sparsity (A,): 1e-08 TN (1,000-7)/4
« Dropout proportion (proportion of outputs randomly set to pooling R'zljj’w size:d__loyer2
320

0):
* Layer 2: 20%, Layer 4: 20%, Layer 5: 50%, All other 320 conyelution 1 '
Iayers: 0% kernels:|4*8 convolution Window size:8
4 l input

1000
=7

-cpinau e Nat Methods. 2015 October; 12(10): 931-934 .
s |°‘-N°%’ .

Regularization

* When model complexity increases, generally bias decreases and variance
increases

¢ Minimize the total error.

a b

. Total
e %
w
Variance
Bias
- 0
Model complexity Y

(b) Polynomial fits to data simulated from a third-order polynomial underlying a model with normally distributed noise.

- Underfitting (gray diagonal line, linear fit), reasonable fitting (black curve, third-order polynomial) and overfitting (dashed curve, fifth-
order polynomial).

(c) Two-class classification (open and solid circles)

- Underfitted (gray diagonal line), reasonable (black curve) and overfitted (dashed curve) decision boundaries.

- The overfit is influenced by an outlier (arrow) and would classify the new point (orange circle) as solid, which would probably be an error.

NATURE METHODS | VOL.13 NO.9 |

- SEPTEMBER 2016 | 703
LRty 36
od Maraan Sociaty for Bioinfommatics
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Regularization (L1 norm and L2 norm)

* To reduce its generalization error but not its training error

argmin((Xw — )T (Xw —Y) + Areg(w)) = argmin(J(w) + Areg(w))

L2 regularization L1 sparsity

reg(w)=|lwl|3 regw)= | |w] |,

wo

N P Minimizes regularization W‘ L1: Encourages sparsity

wy e Squared L2: Encourages small weights
Figure 7.1

- Goodfellow, Deep Learning, 2016
OB

Regularization for Deep Learning

* Dropout
Figure 7.6 9 9 9 O
ofo o&a o’@ %
© otcccMlcfe
ONEONNO)
0*0 & Q@
OO0 ®E O

vN
Y| °

Ensemble of subnetworks

10
()
oo

_ Goodfellow, Deep Learning, 2016
$aSBiERdRERas
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DeepSEA model configuration

* Training of the DeepSEA model.

objective = NLL + A4, || W || + 4, ||[H "],

NLL ==Y ¥log(Y/ f; (X*) + (1 = Y)(1 = £(X*))

s !

* s:index of training samples
e t:index of chromatin features.

* Y7:0,1 label for sample s, chromatin feature t.
*  f; (X5): the predicted probability output of the model for

chromatin feature t given input X5.

* Regularization Parameters:
e L2 regularization (A,): 5e-07
e L1 sparsity (A,): 1e-08

* Dropout proportion (proportion of outputs randomly set

to 0):

* Layer 2: 20%, Layer 4: 20%, Layer 5: 50%,

layers: 0%

® CO; SHAND A Bt
§eSBiaauBELas

nan Saciaty for lsinfemmrtics

sigmoid

Fully connected 925

Fully connected 925

Flatten (960*53)

960 convolution

1,000-7)/4-7)/4-7
kernels: 480*8 ((1,000-7)/4-7)/

onvolution window size:8 layer5
480
((1,000-7)/4-7)/4
pooling window size:4 layer4
480
480 convolutien -7)/4-7)
kernels: 320*8
320
TN {1,000-7)/4
pooling Window size:4 layer2

320 conyaolution
All other kernels:|4*8

convolution

4| input

1000
=+

Nat Methods. 2015 October; 12(10): 931-934

model.lua

require 'torch'
require 'nn'
require 'cunn’

require 'math’

nfeats = 4
width = trainData.data:size(3)
height =1
ninputs = nfeats*width*height

nkernels = {320,480,960}

model = nn.Sequential()

model:add(nn.SpatialConvolutionMM(nkernels[2], nkernels[3], 1, 8, 1, 1, 0):cuda())
model:add(nn.Threshold(0, 1e-6):cuda())

model:add(nn.Dropout(0.5):cuda())

nchannel = math.floor((math.floor((width-7)/4.0)-7)/4.0)-7
model:add(nn.Reshape(nkernels[3]*nchannel))
model:add(nn.Linear(nkernels[3]*nchannel, noutputs))
model:add(nn.Threshold(0, 1e-6):cuda())
model:add(nn.Linear(noutputs , noutputs):cuda())

model:add(nn.Sigmoid():cuda())

print(model)

model:add(nn.SpatialConvolutionMM(nfeats, nkernels[1], 1, 8, 1, 1, 0):cuda())

model:add(nn.Threshold(0, 1e-6):cuda())
model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())

model:add(nn.Dropout(0.2):cuda())

model:add(nn.SpatialConvolutionMM(nkernels[1], nkernels[2], 1, 8, 1, 1, 0):cuda(
)

model:add(nn.Threshold(0, 1e-6):cuda())
model:add(nn.SpatialMaxPooling(1,4,1,4):cuda())

model:add(nn.Dropout(0.2):cuda())

§aSBgFezEmas

man Saciety for Boinformtics

Nat Methods. 2015 October; 12(10): 931-934
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Chromatin profile prediction performance

a Transcription factors DNase I-hypersensitive sites Histone marks
1.00 1.00 1.00
g o7 g o7 g o075
o o [
i i 2 2 2
Receiver operating £ 050 -§ 050 = 050
characteristic (ROC) & 3 g
curves £ 028 g 025 g 025
0.958 0.923 0.856
0 0
T T T T T T T T T T T T T T T
0 025 050 075 1.00 0 025 050 075 1.00 0 025 050 075 1.00
False positive rate False positive rate False positive rate

Performance comparison with gkm-SVM for TF binding site prediction

1.04 > 0 s i i
RS 09 &7 ,QS,*
" 5 s Gapped k-mer
.84 w0 .
g § & 08 :s SVM did not
=) o4 :
DeepSEA outperformed §8 . 0z gain performance
i &= ; . .
k-mer SVM for most TFs. osl 03 from increasing
06 size of context
sequences
04 05
04 06 08 10
gkm-SVM DeepSEA  gkm-SVM  gkm-SVM
(3000p) (1000bp) (1000bp)  (3000p)

-cpinau e Nat Methods. 2015 October; 12(10): 931-934

Chromatin effects of single-nucleotide
alteration in noncoding sequence

Output:
variant functionality
prediction Functional-variant prediction

we

AT * Computational mutation scanning to assess the
gwr.“;'.;:{;dmmm = effect of mutating every base of the input sequence
o * The effect of a base substitution on a specific
Lot chromatin feature prediction
DHS TF binding Histone marks )
;?rls.d?i_lc‘;;a allele- weet O@@0 @O0 00@0 PU Pl
T s OOQO0@0 000 0 log, — log,
1- Py 1-P

Predict t

Training data: Train ™ . o

ENCODE, s | Doep convolutional network P,: probability predicted for the original sequence

Roadmap Epi iCS | < (DeepSEA) oy .

chromatin proties P,: probability predicted for the mutated sequence
Input t

Input:

genomic sequences . . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT. . .

(1,000 bp) . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT . . .
Variant position

- cpiaauTEw Nat Methods. 2015 October; 12(10): 931-934 ,,
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Chromatin effects of single-nucleotide

alteration in nonco

BN e B .
g n 0 T WS
B (L

- Cell types heterozygous | & " Cell types homozygous
. T/C SNV rs4144593 Tor Cat SNV rs4144593

1 Chr9: 36399995 1 Chr9: 36399995

g iz
2 8 : 9
@ R )
° 2 ‘2
K] E b~ |
= CAGAGAGACAACAGA L CAGRGAGACAACAGA [ =.
i Ca (00 < N T
NF1/CTF1 motif O NF1/CTF1 motif :
1 Chr9: 36399995 @ 1 Chr9: 36399995
@ 2
© o '_n
@ > .
o g 8
3 : £ b
2 CAGAGAGACAACH 5 CAGAGAGACAACAGA | =
c Gy (CO0kw c Lo OO

NF1/CTF1 motif NF1/CTF1 motif

Neph, S. et al. Nature 489, 83-90 (2012).

ding sequence

Evaluation data

Allelic imbalance information from digital genomic
footprinting (DGF) DNase-seq data on ENCODE cell lines.

Allelic imbalance: one allele is observed in DNase-seq
data significantly more often than the other allele at a
heterozygous site for a single-cell-type sample

57,407 allelically imbalanced SNPs from 35 cell types
with DHS predictors

28,918 reference allele—biased variants

28,489 alternative allele— biased variants

Nat Methods. 2015 October; 12(10): 931-934

faSBigReBEA

Performance for predictions for DNase |-

sensitive alleles

(b)

* Y-axis: predicted prob. that reference allele is & 06

DHS

X-axis: predicted prob. that alternative allele
is DHS

Red dot: experimentally determined
alternative allele—biased variant by DGF data
Blue dot: experimentally determined
reference allele—biased variant by DGF data

Ppys (refere

Black lines: the margin, or the threshold of
predicted probability differences between the
two alleles for classifying high-confidence
predictions (margin = 0.07 for this plot).

05 T T T T T T T T 1
0 0.050.10 0.15 0.20 0.25 0.30 0.35 0.40
Margin

0

0.2 04 0.6

Ppys (alternative)

(c) Accuracy.

* Blue line: performance for a different cell
type

* Red line: overall performance on allelically
imbalanced variants for all 35 cell types

Nat Methods. 2015 October; 12(10): 931-934
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Functional SNP prioritization

Probability Output

Boosted logistic
regression classifier

Take absolute value, concatenate, and standardize features (1842 features)

Evolutionary conservation Absolute difference features Relative difference

scores (919 features) features (919 features)
(PhastCons, PhyloP, P (reference)
GERP++ neural evolution P(reference) — P (alternative) I P(alternative)

and rejected substitution
scores) \‘><IA
K

I Predicted chromatin Predicted chromatin
features for features for
reference allele alternative allele

DeepSEA model

!

1000bp flanking genomic sequences with each allele

1
I

Variantinput

) Nat Methods. 2015 October; 12(10): 931-934
faSBi R v

Data for functional SNP prioritization

e Positive standards

* Human Gene Mutation Database (HGMD) annotated noncoding
regulatory mutations

* Noncoding eQTLs from the GRASP (Genome-Wide Repository of
Associations between SNPs and Phenotypes) database

* Noncoding trait-associated SNPs identified in GWAS studies from the
US National Human Genome Research Institute’s GWAS Catalog

* Negative standards

* Several sets of negative SNPs with different distances to positive
standard SNPs

* Closest 1000 Genomes SNPs in the full set, 25% random subset and 5%
random subset of 1000 Genomes SNPs with minor allele frequency
greater than 0.01.

* More...

) Nat Methods. 2015 October; 12(10): 931-934
faSBi R 46
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Performance of functional SNP prioritization

AUC values for tenfold cross-validation

HGMD regulatory mutation GRASP eQTL (noncoding) GWAS Catalog (noncoding)

(n=2,977) (n=78,613) (n=12,296) Demach
0 n=4e, n= | n= e
.70 0.75 075 ~——— CADD
0.65 0.70 e GWAVA (unmatched)
0.65 — =~ GWAVA tss)
S 0eo - GWAVA (region)
e 0.60 2
0.55 = FunSeq2

0.55

050}

0.50 |
1,200 260 100 Al 81,000 6300 1400 360 Al 31,000 6,300 1400 360

Megative SNP group (bp) MNegative SNP group (bp) MNegative SNP group (bp)

e x axes: average distances of negative-variant groups to a nearest positive variant
* All: randomly selected negative 1000 Genomes SNPs

-cpinau e Nat Methods. 2015 October; 12(10): 931-934

Contents

* Introduction to noncoding variants
 Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods to prioritize noncoding variants
e Convolutional neural network

* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

* DanQ: a hybrid convolutional and recurrent deep neural network for
quantifying the function of DNA sequences

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107
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Recall) CNN and modelling TF binding
sites

e CNN predicts the binding affinity of the TALI-GATA1 + a: One-hot encoding of the DNA sequence.
transcription factor complex. * b: First convolutional layer scans the input sequence
. b . using filters, which are exemplified by position weight
Input  Convolution  Activation matrices of the GATA1 and TAL1 transcription factors.
pECE & S * c: Negative values are truncated to 0 using ReLU
c] [ ] activation function.
d . . oo * d: In the max pooling operation, contiguous bins of
a . Convolution Momten  me conany d the activation map are summarized by taking the
:S ? s Fiters maximum value for each channel in each bin.
57 | & &
(@] s S " S o

CATAL+TALL
|

e N u (o
FLHJ_...-_.B_.(!MU\. GATAT TALL
GATAL e e: The second convolutional layer scans the sequence
for pairs of motifs and for instances of individual
. m motifs.
' T * f: RelU activation function is applied.
* g: The maximum value across all positions for each
Negatve - Posiive channel is selected.

Chonnels * h: Afully connected layer is used to make the final
prediction.

|
|

EErEREEERRERREREERERE

ERER
|| T NN
E. - EE BN
|
1¥YDVYD
TVl
SuGHIsey )

Nature reviews genetics volume 20:389 July 2019
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DanQ model

* Graphical illustration of the DanQ model
- Input sequence
- One hot encoded into a 4-row bit matrix.
Convolution layer with rectifier activation
- Acts as a motif scanner across the input matrix
- Produces an output matrix with a row for each convolution
kernel and a column for each position in the input.

Recurrent Dense Multi-task output

r - Max pooling
8 - Reduces the size of the output matrix along the spatial axis,
':'é preserving the number of channels.
= model = Sequential()
7: model.add(Convolution]1 D(input_dim=4,
-E input_length=1000,
3 nb_filter=320,
filter length=26,
o border_mode="valid",
£ activation="relu",
S BEENEN HEN HE . 8 subsample_length=1))
g ACA '|‘ ACTCAH‘CHA‘I‘CT 'rl' model.add(MaxPooling1 D(pool length=13, stride=13))

model.add(Dropout(0.2))

. Nucleic Acids Research, 2016, Vol. 44, No. 11 e1o750
$aSBi EReEYRAs
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DanQ model

(1000-25)/13=75

Max pooling = Recurrent Dense Multi-task output

Convolution

L1

AONCCTOACTOATTCTTATCTTT

One hot coding

faSBigReBEA

oa

* Graphicalillustration of the DanQ model
- BLSTM layer
- Considers the orientations and spatial distances between the
motifs.
- Two fully connected layers
- Adense layer of rectified linear unit
- Sigmoid non-linear transformation to a vector that serves as
probability predictions of the epigenetic marks to be
compared via a loss function to the true target vector.

* The rationale for BLSTM layer

- Motifs can follow a regulatory grammar

- invivo spatial arrangements and frequencies of
combinations of motifs,

- Afeature associated with tissue-specific functional
elements such as enhancers

forward_Istm = LSTM(input_dim=320, output_dim=320, return_sequences=True)
backward_Istm = LSTM(input_dim=320, output_dim=320, return_sequences=True)
brnn = Bidirectional(forward=forward_Istm, backward=backward_Istm, return_sequences=True)

model.add(brnn)

model.add(Dropout(0.5))

model.add(Flatten())

model.add(Dense(input_dim=75*640, output_dim=925))

model.add(Activation('relu'))

model.add(Dense(input_dim=925, output_dim=919)) Note (1000_25)/13=75
model.add(Activation('sigmoid'))

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10751

Performance

comparison

* Training, validation and testing sets were downloaded from the DeepSEA website

* Input: reference sequence

* Output: A length 919 binary target vector from 919 ChlP-seq and DNase-seq peak
sets from uniformly processed ENCODE and Roadmap Epigenomics data releases

* A better metric to measure the performance is the area under precision-recall curve

* PR AUC metric is less prone to inflation by the class imbalance than the ROC AUC

(PR AUC)
metric 1S
N GM12878 EBF1
— DanQ (AUC=0.291) 13
0. — DeepSEA (AUC=0.187) 1.0
c — LR (AUC=0.048) c
o o 0.8
@ )
g B 0.6
& &4
0.2
1]

0.0 0.2 0.4 0.6 0.8 1.0 0'8.0
Recall

H1-hESC SIX5 K
— DanQ (AUC=0.469) o
— DeepSEA (AUC=0.287) L %8 .
— LR (AUC=0.027) <D( o
0.6 o
lod -
o
Q 0.4
— 4
0,2 ”3“
0.2 0.4 0.6 0.8 1.0 ) -ﬁ
Recall 0.0 0.2 0.4 0.6 0.8 1.0

DeepSEA PR AUC

LR models achieve a PR AUC below 5% for the + 97.6% of all DanQ PR AUC scores surpass

two examples

faSBigReTR R

DeepSEA PR AUC scores

Nucleic Acids Research, 2016, Vol. 44, No. 11 e10752
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Position frequency matrices, or motifs

* Convert the kernels from the convolution layer of the DanQ models to position
frequency matrices, or motifs.

* Align these motifs to known motifs using the TOMTOM algorithm.

* Of the 320 motifs learned by the DanQ model, 166 significantly match known motifs
(E<0.01).

A EBF1 TP63 CTCF
E=2.2e-4 E=1.6e-11 E=2.7e-12

] J'C‘;c‘i'e‘“ ] __:c{‘!_'f_?s__t_c'_e'[_‘_i__( I chﬁcﬁ.,\c,\

] ccc:.—.? I ¢ "C“ ] Ccﬂ"' Aagiogss

* Top: EBF1, TP63 and CTCF motif logos from JASPAR
¢ Bottom: three convolution kernels

Nucleic Acids Research, 2016, Vol. 44, No. 11 e107
faSBigadTYRa >

Contents

* Introduction to noncoding variants
 Computational methods to prioritize noncoding variants
* Genomic and epigenomic information

* Deep learning methods to prioritize noncoding variants
e Convolutional neural network

* DeepSea: Predicting effects of noncoding variants with deep learning—
based sequence model

* DanQ: a hybrid convolutional and recurrent deep neural network for
guantifying the function of DNA sequences

* DeepFun: Predicting regulatory variants using a dense epigenomic
mapped CNN model elucidated the molecular basis of trait-tissue
associations

Nucleic Acids Research, 2021, 49(1): 53-66
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DeepFun

* Assess the functional impact of a non-coding variant and its
impact in a tissue- and cell type-specific manner

* Increased epigenetics tracks from ENCODE and Roadmap (6
May 2019)
* 7870 chromatin features

* 1548 DNase | accessibility, 1536 histone mark and 4795
transcription factor binding profiles.

* Removal of technical or biological replicates

* DeepFun incorporates a total of 117 DNase-seq, 360 histone
modification, and 795 TF binding profiles

vs. DeepSea
* Atotal of 919 peak sets (125 DNase | hypersensitivity profiles, 104
histone mark profiles, 690 TF binding profiles for 160 different TFs)

CNN model

Sequence fragment —— Position weight matirx (PWM) Chromatin accessibility or binding affinity ° One hot enCOdlng Seq Uence

CTACACTTGAAAACAGGATGT GAGACAAGG e A Model® e 1,000 bp sequence
AT T e LT TN e \ﬁlﬁ‘f'lﬁ%';::“* ’ |pbq
Seqt M S EE L] L R o - i i
G = } ML e e e B Four-low inary matrix
AACAGACAAACTTGAGTGAAGGGATGCTAC K [o]e]]
AR TR T B
Se GO i@ CrH P e zﬂ¢:$L_j DoDEgonoE :
T nERREERUnEOE _ o mme ¢ Three-layer CNN architecture
sean TR T . . .
CGACTACAAGTGACAATGGGGGAAACTTAA AF ¢ 300 convolution filters in
soan 1 e e {1 i the 1t layer
¢ H:H T AEj LER : i Xd
| X PWMS)_Y ibil orbi"dinga"ini"')l E(l:hrama!lnM:rI;if‘iT::sr:::;Iictraining)E ¢ 2 and 3 Iayers Were
@ 2 N ' operated on the output of
Cc .
T | P A the prior layer
ST Convolution filters
l * Two fully connected neural
RelLU Linear .
] | network layers with 30%
MaxPool
Round 1st, 2nd Sigmoid transformation dropout rate
Round 3th E . .
= 1 f I + A fully connected sigmoid
Linear transformation 0 .
1 transformation layer
ReLU Prediction . . P ey
. DeepFun model (Observation) * Predicting activity (accessibility or

binding affinity) probability
OB #=4eE=es  Nucleic Acids Research, 2021, 49(1): 53-66
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Performances

* Random selection of 80%, 10%, and
the remaining 10% for training,
validation, and for testing.

* A median AUC of 0.933 over all DNase-
seq assays

* A median AUC at 0.80 for all TFs assays,
ranging from 0.64 (ZC3H11A) to 0.98
(SP4)

AUC

Nucleic Acids Research, 2021, 49(1): 53-66

Prioritizing regulatory variants

* SNP Activity Difference (SAD) Application to non-coding

* Alt — Ref variants in ClinVar database

* Ref: predicted activity probability
for the reference allele/original
sequence (ranging 0 ~ 1)

» Alt: predicted activity probability for
the alternative allele/mutated
sequence (ranging 0~ 1)

 Variants with a higher positive SAD :
alternative allele increases the
epigenetic signal compared to the
reference allele

* Variants with a negative SAD value: 0.00
decrease the epigenetic signal s &

o
o
w

o
o
(¥

0.014

Average SAD across all features

. Nucleic Acids Research, 2021, 49(1): 53-66
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Top 15 chromatin features

Prioritizing regulatory variants

Prioritize non-coding causal variants in a tissue specific fashion.

Top 15 chromatin features related for three non-coding variants

Cystic fibrosis: rs1554398510

DNase-seq: tonguo

DNase-seq: stromal_cell_of_bone_mamow
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DNase-seq: skeletal_muscle_cell
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DNaso-soq: renal_cortical_opithelial_cell<
DNase-seq;: Peyer's_patch -

DNase-seq; pancreas

DNase-seq: epithelial_cell_of_prostate 4
DNasa-seq: epithalial_cell_of_esophagus
DNase-seq: bronchial_opithelial_ceil 4

DNase-seq: body_of_pancreas 1

o
=3
=)

|
|

005 ©
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Coronary artery disease: rs1024611

H3K27ac-human: muscle_of_leg
DNase-seq: testis

DNase=seq: nght_lung

DNase-seq: muscle_of_trunk

DNase-seq: muscle_of_back

DNase-seq: lung

DNase-seq: left_lung

DNase-seq: hindimb_muscie

DNaso-seq heart_right_ventricle
DNase-seq: heart_left_ventricie
DNase-seq. heart

DNase-seq: fibroblast_of_skin_of_abdomen
DNase-seq: fibroblast_of_pulmonary_artery
DNase-seq: eye

DNase-seq: cardiac_muscle_cell

L
002 004 006
SAD

0.

2
a3

* Cystic fibrosis: Most fibroblast tissues related DNase-seq profiles were associated with
rs1554398510, especially in fibroblast of dermis.

* Maturity-onset diabetes of the young (MODY ): Both DNase-seq and H3K4me1 profiles in
pancreas tissue had strong association with rs886037620.

* Coronary atery disease: The impact of rs1024611 was the strongest in heart and cardiac

muscle tissue

Nucleic Acids Research, 2021, 49(1): 53-66
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Prioritizing regulatory variants

Autism de novo mutations from Simons
Simplex Collection (SSC) cohort

* 2600 simplex families

* Each family has one child affected by
ASD and unaffected parents and

siblings.

All non-coding variants are grouped into
unaffected and affected siblings.

Consider the average SAD scores of the
non-coding variants over all brain tissues.

With increasing SAD thresholds
* The percentage of variants in patient

siblings increases

* The percentage in health siblings

decreases.

Percentage

100%

75% o

50% 4

25%

0% A

S

SSC
. Autism
. Control
o U]

Ok >

&

SAD threshold (brain feature)
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Summary

* Noncoding variants

* Computational methods to prioritize noncoding variants based on
genomic and epigenomic information
* GWAVA: Genome-wide annotation of variants

* Deep learning methods based on genomic sequence
* DeepSea
* DanQ
* DeepFun

e If you are interested, see studies in related topics.

* DeepC: predicting 3D genome folding using megabase-scale transfer
learning (Nature Methods 17:1118-1124(2020))

* Predicting 3D genome folding from DNA sequence with Akita (Nature
Methods 17:1111-1117(2020))
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