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Introduction to ConnectivityMap
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Speaker Name: Minji Jeon, Ph.D.

» Personal Info

Name Minji Jeon

Title Assistant Professor

Affiliation Korea University

» Contact Information

Address 161, Jeongneung-ro, Seongbuk-gu, Seoul, 02708
Email mjjeon@korea.ac.kr

Phone Number  010-2354-7084

Research Interest
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Educational Experience

2012 B.S. in Computer Science, Korea University, Korea
2014 M.S. in Interdisciplinary Graduate Program in Bioinformatics, Korea University, Korea
2018 Ph.D. in Computer Science, Korea University, Korea

Professional Experience

2018-2019 Research Professor, Korea University, Korea
2020-2022 Postdoctoral Fellow, Icahn School of Medicine at Mount Sinai, USA
2022- Assistant Professor, Korea University, Korea
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Genome-based Disease Research

* GWAS (Genome Wide Association Study)

+ To identify genomic variants that are statistically associated with a risk for a disea
a particular trait

« Limitations: association with disease is generally not sufficient to establish causality or
to provide mechanistic and circuit-level biological |n5|ghts

8 Data callection b Genotyping :Myﬂnl

A

A
“rge®

Uffelmann, Emil, et al. Nature Reviews Methods Primers (2021)
Tam, Vivian, et al. Nature Reviews Genetics (2019)




ConnectivityMap Concept

« ConnectivityMap: Linking disease, therapeutics and cell physiology

SCIence Current less  First elease papars  Archive  About v Subenit manus

MOME 3 SCRNCE B WOL 718003793 3 THE CONNECTIVITY MAF USING OENE-EXSRESHION MONATUNES 10 COMSECT SMALL MOLECULES, UENES, AND.

HEREANCH ARTICLED fo¥inae% o

The Connectivity Map: Using Gene-Expression
Signatures to Connect Small Molecules, Genes, and
Disease

SCNCE | 3 tep sty
#7402 9y am A O » 0

Abstract

To pursue a systematic approach to the discovery of functional connections ameng o

diseases, genetic perturbation, and drug action, we have created the first install- ~

ment of a reference collection of gene-expression profiles from cultured human

cells treated with bisactive small molecules, together with pattern-matching soft b . S

ware to mine these data, We demonstrate that this "Connectivity Map” resource &

can be used to find connections among small molecules sharing a mechanism of m

action, chemicals and physiological processes, and diseases and drugs. These re -

sults indicate the feasibility of the approach and suggest the value of a large-scale

community Connectivity Map project. 2 Lamb, Justin, et al. science 2006 3

ConnectivityMap Concept

* Linking disease, therapeutics and cell physiology




ConnectivityMap Concept

» Gene expression data could be used for the functional annotation of s
molecules and genes
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Applications of the ConnectivityMap

 The Connectivity Map is a tool for the bench researcher

Unannctated chemical cmap hypothesis Experimental verification New inhibitors

| verification Clinical evaluation

Nature Reviews | Cancer

Lamb, Justin. et al. Nature reviews cancer (2007) 6




Definitions

* Perturbation: an alteration of the function of a biological system, induce
by external or internal mechanisms.

* Perturbagens: perturbing agents that are screened in an assay (e.g., small
molecules, sShRNA etc)

» Gene Signatures: differential expression of genes between two conditions, a
control condition and a perturbation condition

ConnectivityMap v1

* Perturb cells and measure cellular responses

[eTeTeTs)
+ ooc?oooo —
BT W
T .
164 small molecules 4 cell lines 564 microarray profiles
FDA-approved drugs MCF7 (breast cancer) 10 uM concentration
nondrug bioactive tool compounds ~ PC3 (prostate cancer) 6 or 12 hours
HL60 (leukemia) with controls
SKMEL5 (melanoma) -> 453 gene signatures«




ConnectivityMap v1

« Query

* Input: gene signature (query signature)

« Search: rank-based pattern matching strategy based on Kolmogorov-Smirnov statistics -

» The genes on the array are rank-ordered according to their differential expression relative to
the control

» The query signature is then compared to each rank-ordered list to determine whether up-
regulated query genes tend to appear near the top of the list and down-regulated query
genes near the bottom
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Results: HDAC inhibitors

. 1 Fig. 2. HDAC Inhibitors. (A} A
Query gene sig natures HDAC inhibitors are highly 1 ”“'1‘ “'_‘“:‘f;':ml $"; h::g? ““’:‘
o . vorinostal M
* 13 SIg natures downloaded from T24 ranked with an exteral HDAC 2 tichoslatin A [873] 1 uM MCF7 D99
: . inhibitor signature. The “bar- 3 trichostalin A[982]  100nM  MCF7  0.831
(breast Ca rcmoma) cells treated with view" is constructed from 453 4 frichostatin A[1050]  100nM  MCF7  0.929
N 3 horizontal lines, each represent- 5 vorinostat [1058] 10 pM MCF7 0917
Trichostatin A) ing an individual trepatment & trichostatin A [981] 1M MCF7 0815
; p 7 HC toxin [909) 100nM  MCF7 0914
instance, ordered by their corre- 8 tichostain A[1112] 100nM  MCF7  0.808
sp.»ondlng connectivity scores 9 trichostatin A [1072] 1pM MCF7  0.808
with the Glaser et al. (14) 10 trichostatin A [1014] 1pM MCF7 0893
signature (+1, top; =1, bottom). 11 trichostatin A [332] 100 nM MCF7  0.882
° Resu ItS All valproic acid (7 ~ 18), tricho- 12 ftichostatin A[331]  100nM  MCF7 0846
" . % ichostatin A [448] 100 nM PC3 0.788
. . statin A (n = 12), vorinostat 13 trichostatin
. ‘] 14 valproic acid [345] 10mM MCF7 0.743
* New molecules: HC toxin, valproic ac ¢ - 2) and Hc toxin 0 - D i MmhadbR  mM M e
instances in the data set are B 16  valproic acid [1047] 1mM MCF7 0733
colored in black. Colors applied 17  tichostatin A[413]  100nM  ssMCF7 0725
to the remaining instances re- 18 va1pm!cac:_d [410] 10 mM HL&D 0.725
M . 19 valproic acid [458] 1mM PC3 0.680
flect the sign _°f their scores 33 valproic acid [408] 1 mM HL6O 0634
lgreen, positive; gray, null; red, T 39 valproicacid[1020] 500pM  MCF7  0.619
negative). The rank, name [in- 52 valproic acid [346] 2mm MCF7  0.582
stance idl, concentration, cell - 61 valproic acid [1078] ~ 500uM  MCF7 0563
line, and connectivity scare for  45% 71 valproic acid [629] 1mM  SKMELS 0.539
. 72 valproic acid [347] 500uM  MCF7  0.539
each of the selected HDAC in- 73 valproic acid [989] 1 mM MCF7 0538
hibitor instances is shown. Un- 76 valproic acid [433) 1mM PC3 0.528
abridged results from this query 89 frichostatin A[364] 100 nM HLEO 0507
are provided as Result S1. (B) 92 valproic acid [497] 1mM  ssMCF7 0501
s 297  wvalproic acid [348] 50 pM CFT 0
Chemical structures. 388 valproic acid [994]  200pM  MCF7 0
403 valproic acid [1002] 50 uM MCF7 0
419 valproic acid [1060] 50 pM MCF7  -0.537
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Results

« anthelmintic drug parbendazole as an inducer of osteoclast differentiati
(Brum et al., 2015)

« celastrol as a leptin sensitizer (Liu et al., 2015)

« compounds targeting COX2 and ADRA2A as potential diabetes treatments
(Zhang et al,, 2015)

« small molecules that mitigate skeletal muscular atrophy (Dyle et al., 2014)
and spinal muscular atrophy (Farooq et al., 2009)

* new therapeutic hypotheses for the treatment of inflammatory bowel
disease (Dudley et al., 2011) and cancer (Singh et al,, 2016; Muthuswami et
al., 2013; Wang et al., 2008; Schnell et al,, 2015; Fortney et al.,, 2015; Wang
et al, 2011; Churchman et al,, 2015; Rosenbluth et al., 2008; Saito et al,

- 2009; Stockwell et al., 2012)
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Next-Generation ConnectivityMap (CMap v2)

A 25,200 unique perturbagens

5075 314 19,811
genes  biologics  small molecules

+20,000 perturbagens

ConnectmtyMap Pattern matching algorithm

+80 cell lines

Touchstone Discover
(Reference)

53% 47%

1.3 million profiles / 473,647 signatures

CMap version 2 with 1.3 M‘p‘?ofiles

12




LINCS Consortium

 The Library of Integrated Network-Based Cellular Signatures (LINCS)

—— NEUR®LINCS
MIT

- Lincs
-

Connec |\'i1yMap
Broad Institute

- LINCS PCCSE
w_Fanorama Repository

ty of Washington

& MEP-LIN

", LINCSPCGSE
nem— Panorama Repository

Broad Institute

%)Toxs

Rutgers University

NEUR®LINCS

Johns Hopkins

DATA COORDINATION AND
IHTEGRATION CENTER

University of Cincinnali

+¢ Indicates awardee
institution

DATA coonlnirlna AND
INTEGRATION CENTER

University of Miami
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L1000 Assay Enables Massive Scale Up of Data

A B
Capture and reverse Ligate probes and amplify ~ Hybridize to beads Couple two genes to Deconvolute peaks
transcribe mRNA with biotinylated primers and stain with SAPE the same color bead in readout
Barcode Gene-specific Gene ®
384-well m“ SAPE - @ Bead
plate G  Sequencs sequence | / A B uUsetwicethe S abundance
4‘- [N /\:\k—b W W number of beads 1 increases
% J S — w & N for gene B than @ peak height
= treated cells TTTT I* } — gene A Intensity
B —mm ul AR '\g{_’. { Therefore
AAAA I "I-"'_ Identify gene and v L
Target mRNA Biatinylated primer quantify expression mRNA abundance :
shifts peak i Gene
.. 15
100 ~ g
o 10
@ 2
2
S 80 - g 5 ;
o] § -1 11,558
8 2 £ s
~ B0 -+ a3 7, R ey
» 5 1 150 5§ 10 15 0 5 10 15
g RNAseq logy RPKM)  RNAseq logs RPKM) ANAseq flogz APKM)
§ 40 Wall-infarred
c o Be f-
e 08
X | = g Notwan
4
T T T
100 1,000 10,000
Number of landmarks .
0 02 04 06 08 10 -0 00 10 14
Spearman comelation Sell-correlation




L1000 Assay Enables Massive Scale Up of Data

0

DATA
LEVEL

@ Norm

oGEx
: i 1k

1k

Raw scans  Deconvolution Scaling to
of peaks control genes

L1000 RNA-Seq

Cost $ $3%
Library
prep? Fast Slow
Detection of Needs
non-abundant No change deeper
transcripts coverage
“Accuracy” High High
Evidence of a
additional benefit )

@ Inf

023
Bk '

= Landmark

, genes et

12k ! =
Inference of Compare repli- Consensus
transcriptome  cates to control  signatures

All Inferred Gene (AIG)
space - 12,328 genes

Best INferred Gene (BING)
space - 10,174 genes
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1M Profiles of CMap v2

A 25,200 unique perturbagens

5,075 314 19,811
genes  biologics small molecules

Touchstone
(Reference)

I W

1.3 million profiles / 473,647 signatures

Discover

Perturbagen Type pert_type designation in
metadata files

Compound trt_cp

Peptides and other biological agents (e.z. cytokine)  trt_lig

shRNA for loss of function (LoF) of gene trt_sh

Consensus signature from shRNAs targeting the trt_sh.cgs

same gene

cDNA for overexpression of wild-type gene trt_oe

cDNA for overexpression of mutated gene trt_oe.mut

CRISPR for LLoF trt_xpr

Controls - vehicle for compound treatment (e.g ctl_vehicle

DMS0)

Controls - vector for genetic perturbation (e.g ctl_vector

empty vector, GFP)

Controls - consensus signature from shRNAs that  trt_sh.css

share a common seed sequence

Controls - consensus signature of vehicles ctl_vehicle.cns

Controls - consensus signature of vectors ctl vector.cns

Controls - consensus signature of many untreated  ctl_untrt.cas
wells

Controls - Untreated cells ctl_untrt

16




1M Profiles of CMap v2

 small molecule compounds
+ ~1,300 FDA-approved drugs
» ~5,585 bioactive tool compounds
» 2000+ screening hits

 knocking-down genes (shRNA) or over-expressing genes
» ~900 target/pathways of FDA-approved drugs
+ ~600 candidate disease genes
* 500+ community nominations

« cells including primary cell lines, cancer cell lines, stem cell lines, and
differentiated cell lines from different tissue types

L

Big Data Science with the BD2K-LINCS DCIC by Avi Ma'ayan
17

1M Profiles of CMap v2

Replicates of the same experiment

N

=

‘ Control replicate

‘ Experiment replicate

plateT plate2 plate3
\ )
» 384 wells in each plate Y
.+ About 18 control replicates per plate Batch

. = About 2~4 plates per batch (e.9. CPC020_VCAP_6H) d:
. About 366 experiments per batch

Big Data Science with the BD2K-LINCS DCIC by Avi Ma'ayan
18




Data Levels

P———

Level 1 Raw fluorescent intensity (FI) values measured for every bead detected by Lumizﬁz——)'_
(LXB) scanners. Each 384-well plate generates 384 LXB files, where each file contains a \
fluorescent intensity value for each observed bead in the well. -
Level 2 Gene expression levels for the 978 landmark genes, deconvoluted from the measured
(GEX) fluorescent intensity values.
Level 3 NORM - Gene expression are normalized to invariant gene set curves and quantile
(NORM, INF) | normalized across each plate.
INF- Additional values for 11,350 additional genes not directly measured in the
L10000 assay are inferred based on the normalized values for the 978 landmark genes.
Level 4 Z-scores for each gene based on Level 3 with respect to the entire plate population.
(ZS) This comparison of profiles to their appropriate population control generates a list of
differentially expressed genes.
Level 5 replicate-collapsed z-score vectors based on Level 4. Replicate collapse generates
(MODZ) one differential expression vector, which we term a signature. Connectivity analyses are
performed on signatures.

N7

19

ConnectivityMap Score

« Computing similarities - Weighted Connectivity Score (WTCS)

oy {(Esup —~ B S %,

Zf sgn (ESup) ?’—_ sgn (ESdown)
0, otherwise

Where £S,, is the enrichment of g, in rand £S,,,, is the enrichment
of Gyounin r. WICS ranges between —1 and 1

* Normalization of Connectivity Scores (NCS)

* Given a vector of WTCS values w resulting from a query, we normalize the values
within each cell line (c) and perturbagen type (t) to obtain normalized connectivity
scores (NCS) as

wc,t/.u:t if sgn(wee) >0

Wet /Moy otherwise

NC‘SC,,; = {

20
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ConnectivityMap Score

» Connectivity Map Score (Tau 1)

* by comparing each observed NCS value ncsq,r between the query q and a reference
signature r to a distribution of NCS values representing the similarities between a

reference compendium of queries (Qref) and r

* Tau (1) that ranges from —100 to +100 and represents the percentage of queries

in Qref with a lower [NCS| than |ncsq,r|

100

Tq,r = SgN (ncsq,r) N Eil [|”‘33i,r| < |”63q,r|]

21

Results

* Discovery of MOA of Unannotated Small Molecules

Antibacterials (147) .
i Other drugs (2,372) P
i FY T d

a B

o

Transcriptional activity score @
&
—l}— a0 o

Topoisomerase
inhibitors

]
v, PIK3/MTOR

Ll

NFKB/IKK  Proteosome

¥ . inhibitors  inhibitors
ATPase l_“‘ v‘."l_fh ‘_ﬂ T
; . .
inhibitors L s, ¢ onbtore e o®) HIF moduators
.
HDAC % ‘
iohibitors~ ® 1 MEKinhibitors —, iyccover (2,418)
2 Tubulin inhibitors PCL member (625)
3 Glucocorticoid

receptor agonists.

Figure 5. Characterizing Known and Unex-
pected Activities of Small Molecules

(A) HDAC inhibitor PCL substructure. Hierarchical
clustering of pairwise connectivities of the HDAC
inhibitor PCL members reveals substructure within
the class. Pan-HDAC inhibitors cluster together,
distinct from more isoform-selective compounds.
{B) Antibacterials exhibit lower transcriptional
activity than other drugs. Distributions of the
maximum TAS per compound for 147 antibacte-
rials and 2,372 known drugs in CMap-Touchstone
(TS). The antibacterials’ TAS distribution is signifi-
cantly lower (p < 3~ '") than that of other drugs.
(C) Comparison of unannotated compounds with
known drugs. t-SNE projection of the signatures of
2418 unannctated but transcriptionally active
compounds (orange) with PCL members (teal).
Some unannotated compounds occupy regions
not covered by drugs, presenting oppertunities for
novel chemical development.

22
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Results

* Discovery of a Selective CSNK1A1 inhibitor

e CSNK1A1
CSNK1D
e /\ CSNKIE
Nk/" | Figure 6. Kinase Inhibitor Discovery Using
X iptional Si
(A Discovery of ROCK1/ROGK2 inhibitor. Top left
panal: chemical structure of BRD-2751, predicted
ore tobe a ROCK inhibitor. Right: TREEspot selectivity
profile of Kinomescan binding assay confirmed
2 compound binding to ROCK1/ROCKZ. Bottom
. Percent of control left: dose response testing by Kinomescan
. @0 e5d0  showedROCKIKpof 56k
o @041 <1035 () Discovery of nowel GSNKIA1 inhibitor. Top lef
@ 0.1-1 - 535 panal: the chemical structure of BRD-1868. Top
right: TREEspot image of Kinomescan binding
® 15 assay performed with BRD-1868 at 10 uM
. demonstrated inhibition of 6/456 kinases tested,
100 ® 100 including CSNK1A1. Bottom left: CSNK1A1 bind-
- 2 ing by BRD-1868 confirmed by Kinomescan, with
2 § Kd 22 pM. Bottom right BRD-1B68 inhibits
§ 50 8 50 phosphorylation  of peptide  substrate by
2 < CSNK1A1, with 1Cag 12.8 uM. Error bars indicate
Kg=22uM g 1Cap = 129 4M standard deviation between technical replicates,
0 o
-10 -8 -4 -10 -8 -6 -4
Log concentration (M) Log concentration (M)

23

Results

Table 4. An overview of the application of CMap for a number of different diseases

Disease Method Data set Result Drug Reference
CNS injuries CMap tool Human MCF7 breast adenocar- The findings show the hypothesis that Calmedulin and piperazine [54]
cinoma [GSE34331) il ition of calmoduli might h hi (repurposed)
allow neurons to alleviate substrate
derived neurite growth restriction and CNS
regeneration,
GBM Pathway analysis GBM data sets (GSE4290, Investigated antitumor drugs in GBM cell Thioridazine [s5]
and CMap tool GSE7696, GSE14805, lines and identify novel drugs thatean
GSE15824 and GSE16011) suppress GBM tumars.
Gaucher disease (GD1) Pathway analysis GD1 mouse [GSE2308) Predicted highly enriched anti-helminthic Albendazole and iqui [s2]
and CMap tool compounds for new drug action on GD1
and repurposing.
Ovarian cancer CMap tool MCF7 and PC3 cell lines Found a P d as PI3K/AKT pathway Thioridazi [s6]
(GSES258) inhibitar that shows the mechanism of
cancer therapeutics,
Stem cell leukemia (SCL) GSEA and CMap toal hESCs cell lines (GSES4508) Found two HDAC inhibitors as ial in- Trich in A and Y [57]
ducers that can be used in treating SCL and nilide hydroxamic acid
acute megakaryoblastic leukemias,
T-cell acute lymphablastic GSEA and CMap toal Human and mouse T-ALL cell Identified interconnecting regulatory path- HDAC, PI3K and HSPD 53]
leukemia (T-ALL) lines (GSE12948, GSEB416 and ‘ways as therapeutic targets for T-ALL. inhibitors
CSE14618)
Prostate cancer CMap tool Celastrol- and gedunin-treated Identified target pathways of androgen Celastrol and gedunin 17
cell lines (GSESS505 and receptor [AR) signaling and madulation of
GSES508) HSPS0 MoA.
Gastric cancer Hierarchical cluster- Yonsei gastric cancer Predicted two ible drug candid far Vorinostat and trich in A (s3]
ing and CMap tool (GSE13861) gastric cancer therapy.
Myelomatosis CMap tool Human myeloma cell lines Found a drug with potential to induce sup- Pristimerin B
(GSE14011) pression of cyclin D2 p gulati z
AML CMap taol AML data (GSE7538) Predicted novel treatment of human primary Celastrol &)
AML with parthenalide and iptional
response of cells.

Musa, Aliyu, et al Briefings in bioinformatics (2018) 25
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K &
rj Mol . anes
Y/ Artificial intelligence Lab g

M=z %= 8-S Hlo|Ee] E&

How to get gene signatures?

« The most fundamental problem:

« Detecting and interpreting differences in the abundance of genes or other genomic
features between experimental conditions, cell types, or disease states

AMNA-Seq reads
=a - R — = a
cenSEhe=CoE o =
e e S a || Wild-type | Mutant
Mo e fussnre Kot Mouse 1 Mouse 2 Mouse 1 Mouse 2
S Gene 1 45 60 30 39
DI: [ ] :Dmrr_w—--u =]
=T T C—:" Gene 2 0 4 3 7
Fo . _ y Gene 3 1010 800 3099 3450
Assemble 1tanscri'nlsl Align transcripts
from spliced alignments 10 gencme
N
] More abundant [ o s s -
- Ch——-a ]

[l Less abundant

27
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Differential expression analysis

« Factors affecting analysis power include limited biological replicates, non-
normal distribution of read counts, and measurement uncertainty for lowly
expressed genes.

-log10 p value

Differential expression analysis

* There are a number of software packages that have been developed fo
erential expression analysis of RNA-seq data

* Tools like edgeR and DESeq2 overcome these limitations using statistical m 1
odels based on negative binomial distribution.

* There is no one method that performs optimally under all conditions

DESeq edgeRt

LE

Soneson, Charlotte, and Mauro Delorenzi
BMC bioinformatics (2013)

-14 -



NIH LINCS Program

* LINCS Tools
+ >50 tools developed by the consortium A —
« Interactive visualizations T
+ Data querying and browsing =
« Various analysis workflows - ——

* LINCS Data TF= gu=— @ =
* Transcriptomics, proteomics, epigenomics, imaging c oy B — e
+ L1000 data contain >3 million samples, >1 million si L= &
* Programmatic access via APIs @ ey Q | =
« User interfaces for querying and viewing signatures — :

o= | w_

30

fconn "imatinib"

Con nectivityMap e

* Visit clue.io i
+ Single keyword search s

- P
mn ]
wa oty
wu 0V potmane b
e PAC v
o he s
T 3 o comamn ACF
. i PIK Sgmiang L0
" BROAD -l
Conneetivity\iap BEENR sm e
Compound
e e e v
ny s 1 mrster B
wa e Tarhang arhyas mAtAT MGamIne recRpty SpamuSe IO antagont
e rateas L sgunat (LARA racepter agonat
e prviverd croear
wa -1 WA FPBAY LAF 400
wn e e wn e g i (000
" e ety
et e
L] il WFUB peean achvale PG et
" Saviman s
TaM e &R
AT tecmmataare st agermt gt
A PO MEX nhito MAP Lreke mhtor
i piotagid eecraisee s vty
Bn aregeses
"N Rbtidiind i el sl
] v, Segam
A PO MEX nhbbr MAF rave
41n RS TP e PO Sy
| EEN et o vain s
Genetic
vy e e e
L] ™R Irc ngery Cin2type Drc Soger proten 42
wa iy e c= 2
bt RapA FALA hamonsg 5 eewenise
Sarpa tnead bos Cd-be 3
e s
ne acme SLCY farmty fonte Chmar ey ] AOVERRT B SOMUC BAT MTE SN0 B0 MBI memter 1
LT il v
we o Pt e oy 1
wa HIFR ‘ 4
e s 1 R e cirthncy; =ysn ke coan L WA traseh st W2 o T z
e arpec Thaset | F b, ATP tymnada. e mascnaran 1 g QA $apaptns |
Rt BOaY Vrbeat SRY (400 ETERNG QN Vibar &
E L ] MELK tams, matemal #70r (9 welle I0Pe LRale
o staTy g RO
T Aatuy ASgtesar recectay srooierdn Il recect o 1
i i oL LT d e A YW
e EFiE s w18
L] DEEE T Sngens CHi2type Dec nger protmn 816
- Lalad procniagen-tine. I oghtame FAonpetme |
o L BREJ putunt of FMA (Rymerias B DanKERon nmaton o BEF 1
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ConnectivityMap

 Search tools

Tools

W

== Touchstone

Query

Data Library

Repurposing

Morpheus

Metadata Browser

CLUE Metadata browser

Find perturbagens that give rise to similar (or opposing) expression signatures

| Explore connectivities between signatures from ~3,000 drugs and genetic loss/gain of
function of ~2,000 genes that make up the CMap touchstone (reference) database

Explore datasets available through clue.io including L1000 cchorts and related
perturbational information

Explore our collection of ~5000 drugs and tool compounds to find potential drug
repurposing opportunities to improve disease treatments

Explore, analyze, and annotate heat maps. Choose an existing dataset or upload your
own data (for example, gene expression or connectivity scores)

32

ConnectivityMap

* Query signature

» Take some time.. ~50min

VOUT samples
Mote that chaosing ‘Latest’ from the query parameters section belove. will run
the quary against our hota datasot reloased on (Dec 17, 2020)

1) Bl i bty
et a -
| e
) Query paracrateey
Fonstisrs

Garie mapraeion (L1005 Crorp—

+ To find perturbagens that give rise to similar (or opposing) expression signatures

Litee

_cs

Etres Gt 103 o Lt e i R GR08 3658 (50 dg
B CoeTON f0r OoWn-TRRULIGED JEne BETS) A Ty CIme you it CNOCee 37 AT B
53 1 in She Dawes for the indwidusi query, 3
O UPregulared gemes © BOWN.cegulated genes (=2cs
e 64158 s o et rems [oom o s | Posen s 18
...................................... T o
© FILE!
| @ Corast
o
© an
© K
© fis
© aRR
@® | omm

) Vilke bt it el i oty
Mong information can be foendin this Connecispedia nicie

4wt and s sy veid e wit ¢ wiedin your query

pert_iname
JUN
BRD-K98645985
TG-101348
lasalocid
JUN
HG-8-91-01
PFI-1
sunitinib
volasertib
BMS-833923
GSK-1070916

AKT1

I-BET-762
PTTG1

lasalocid
BRD-A19037878
F10

I-BET-151
MK-2206

cel_iname  pert_type

H1299 tri_oe
PC3 trt_cp
PC3 iri_cp
HAIE trt_cp
H1299 t_oe
NPC trt_ep
NPC tt_cp
HT29 tri_cp
HCC515  hi_cp
A3T5 iri_cp
£ trt_cp
H1299 irt_oe

trt_cp
HT29 tnt_sh
THP1 trt_cp
HLGO tri_cp
HT29 trt_xpr
A3TS tri_cp
HCC515 tr_cp

pert_idose

20uM
10 uM
10 uM

333uM
10uM
10 uM
333uM
10 uM
10 uM

10 uM
10 uM
0.37uM
-666
333uM
10 uM

pert_itime

96 h
24n
24h
24h
96 h
24h
24h
24h

moa nsample  tas
-666 300 066
-666 3.00 0.57
JAK inhibitor]FLT3 inhibitor 200 052
Bacterial permeability inducer 3.00 061
-666 300 060
-666 300 053
Bromodomain inhibitor 300 058
FLT3 inhibi IT inhibitorPDGFR i ET inh3.00 068
PLK inhibitor 300 055
Smoothened receptor antagonist 300 063
Aurora kinase inhibitor 200 055
666 200 064
Bromodomain inhibitor 3.00 063
666 400 043
Bacterial permeability inducer 200 040
-666 6.00 085
-666 300 016
Bromodomain inhibitor 3.00 069
AKT inhibitor 300 048

raw_cs

062
0.60
059
0.58
058
058
057
057
057
0.56
056

fdr_g_nlog10

15.65
3.66
333
325
320
319
317
313
309
3.06
306
3.00
299
298
298
2.96
294
293
293
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ConnectivityMap

* ol
T e
onll_jd.

» Touchstone
 Find connectivities between signatures

e ame destiigtion

MK-2206 AKT inhiitor
AKT.inhibior-1.2 AT inhittor. PL inhibBor
M barbamine ealmadidin anlagenist
function of ~2000 genes that make up e
matargoling OPAMING ISR AQOMIST S0I0NIN MCACEDT ANGAQERET. profactin inhibitor
E‘hmm wmk.m« rwwlum dopaming recepeor JOpaming reCeptor antagonist MuCosa a3
| POk EI
H i " damtan MOM inhitibee wais stmulant apopiosis stimuant
* AKT1 inhibitor MK-2206 = U i o s i
13 waitraing SAC0I0NIN (ECARLOr ANAGONIST Barotonin reuptaks infsbilor. serctonin uptale inhibior
:: Iﬁl?(;"!ﬂ:\zlhﬂw AOrenaaQic FRCBpIOT AnTAQONISE

AT e

E%.EF;;FpFFF

o e - ‘ Connections of reference perturbagens 1o Index

Yoy L3 RS0
racgmen -
AT .
Carean wmaeen

EO4R e

ConnectivityMap

* Repurposing

* Explore the collection of ~5000 drugs and tool compounds to find potential drug
repurposing opportunities to improve disease treatments

35
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ConnectivityMap

* Morpheus

+ To explore, analyze and annotate heat maps. Choose an existing dataset or upload

your own data

L1000CDS2

« L1000CDS2: LINCS L1000 Characteristic Direction Signature Search Engi
(npj Systems Biology and Applications, 2016)

* CD improves compared to MODZ

Fig. 51 WDS of Charactesistc Directioes of LIFO4 Sigeificant
Perturbations using Codine Distance

WIS of Z-scoee Signatures. of LIPOOA Significant
Ferturbations. n Distance

HEH
*a,
L

37
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L1000CDS2

* Query and results

: : Example gene sets
L1000CDS* >

~ Examples and
Seloct 3 Jemo eXAMEH OF # PrO-COmputed SIGRature a3 Input 1 07416 < Kenpausone on HAIE 10.0um 60n " ° &
T T 2 omeis < A o WE im0 om @ 4
===
3 07993 < ALWaII83 oo HAIE 10um 24n " ] 4
rC ] 08022 e 05000269 (1] Py 100um 2400 " ® 4
reverse  Search for small molecule sigRatures that roverse mry Iput -
5 08038 < BROXY7312348 oo Hiza 100um 60N " ° 4
latest | The database version to be used for search. .
[ 08104 58225002 o HATE 100um 2400 " @ 4
Search for small molocue COMBmNatons. v
bt oo salll pooculor 1 1 g9 oL 7 08143 4 PHATE7491 (] W29 3sum  24m " @ a
down genes  # Yes. 1 agree to share my input signature and metadata for search by othee investigators. 8 085144 4 10006350 o0 MCFT 100um 2400 " ) r's
Matadati 08145 < BROXA2657306 7] MCF7 100um 2400 " e 4
Pa rameters 08172 £ ety 2 50 CroxyCinnamate 1) HATE 100um 2400 m ® a
08173 < Vinblastine suttate [<]"] HATE 100um 2400 " e 4
12 08189 4 G001 o HAE 10.0um 2400 " ) &
19 08183 < PHAT6T491 HT29 111um 2n n e 4
1 08158 < chesenythane chioace (] HAIE 3.33%um 24n " -} s
Cnemcal Petiraatons - 2|94

L1000CDS2

an i
§ &0 150 s Relative percent inhibition 'l
. Query and results %z E'é -=- Rolalive percent cell number
22
N i | z® £z 100 " ey
* Input: Ebola virus signatures §“’ ig
; 0 g i
» Top candidate: Kenpaullone Sy
& £
YN P-4
*f% < f 22 o
Table 1. Top five predicted drugs at each time point ‘}pp 7 £ 5 4
log [Kenapaulione], uM
Drug name Cosine Batch  Cell  Time Concentration \d
distance line  point (M) f
th € uninfected Infected
30 min
Kenpaullone 1.2584 CPCO0Z HAIE 6 0
0800-0289 11978 CPCO14 AS49 24 10
BRD-K37312348  1.1965 CPCO16 HT29 6 10
SB 225002 11896 CPCOOT HAIE 24 0
10006350 11856 CPCO1Z MCF7 24 0
&0 min 03uM  06uM  12uM  23uM  4.7M
Kenpaullone 1.2756 CPCOO2Z HAIE 6 10
PD 166793 12619 CPCOO1 HAIE 24 0
BAPTA-AM 12564 CPCOOT HAIE 24 10 d
BRD-U74615290 12396 CPCO14 HT29 6 10 .
NCGC00229596-01  1.2303 CPCOOB HT29 6 10 .
120 min 126
Kenpaullone 13489 CPCO02 HAIE 6 0 g
NSC 23766 13478 CPCOO6 PC3 24 160 zm
Rosiglitazone 13386 CPCO06 HAIE 24 80 108 N
Thydroxy-2, 3.4, 13351 CPCOO7 AS49 24 10
S-tetrahydro-1H-{1) =
benzofuro(2, 3-¢ [
azepin-1-one -
— — —— —_
LY 364947 CPCOO3 PC3 24 10 bite = P B 39
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L1000CDS2

» Drug combinations

¥ L1000cDS?
1 wr 19 GF109203X 34 BROKS4841585
2 B89 98 3% BROAS8009927
3 899y 35 AG14NGY
4 8997 25 LY 2183240
5 89 96°
6 8994
T 90 07"
s 90 09*
: ) 899"
10 29 89
" 89 88°
” 8988 NACND
n 017 13 PHATETAN 30 NOCODAZOLE
" 8982 36 meczantone 20, avocsd
Comanatons - 2 3.4
q:
40

L1000FWD

+ L1000 fireworks display (L1000FWD, https://maayanlab.cloud/I1000fwd/) (Bioinformati
2018)
+ Graph visualization of L1000 signatures
 Similarity between signatures is computed by cosine similarity
16.8K nodes and 594K edges from 68 cell lines, 3K compounds, 3 time points, 132 dosages

g
H

5

&

sssnssaRRRLeEn
=§§u§§

§338

¥
. BCLI: Gossypol, TW-37
3 Caspase A: PAC-1
Autotaxin inhibitor: Bithionol

Retinoid recoptor A:  Metalloprotease I: WAY-170523
Tomibarotens, AM-580,
[&] tretnon, s, R0 -K25737008

HDAC I:

Trichostatin-A, THM-1-94, Scriptaid, Panobinostat,
Dacinostat, BRD-K79017163

41

- 20 -



L1000FWD

Shape by

Typo the name of adrug

Signature Similarity Search:
Up genes

ZNF238 H

ACACA

ACAT2

ACLY

ACS13 =
Signature similarity search results %

S gigratures  Opposie signatunss

Stow 10w eniries Search

3ig g ang similarity scors pwalus  qualie Zscorm  combined score
CRG00_VEAP_BH BROSCTITE00000.02024  10-DEBC 08333 1730038 7436138 173 mare
CPCO0S_VEAP_EMEBRDATIION T2 001.01-840  BRDATENIT0D 08663 280e74 530 174 128008
CPCO01_VCAP. SHBRDASM1MIS003-01640  NTHCE 0.5278 G71eT1 95TesT 108 1756
CPOOM_VCAP S+ BROMEIIZISEII01-D1-E10 188475 0.5000 17502 634658 161 e
CPGIR_VGAP_GHSROMA0MSTIS-000- 11210 mefoquine 04815 THTe8E 236048 185 1288
CRCH01_VEAP GHBRD KAIESEI0.003.01 040  yiamine o418 24344 14980 72 10844
CPCOUT_AYTS_24H BROJCHI0S4G3.001.0L010  BRDKIIG05403 04815 100883 4BTe80 178 mss

ERGOCS VCAP J4HBRDNSS1ZTIIL30006.290 fuphenasne 04815 126082 49050 180 1803
ERGO0S VGAP_SBHEBAD-HKSS1ZTI3430006220 fuphenazne 04815 125044 B%0e6T 154 12414
CPCOD_VOAP EHBRDNAISZNG00L01240  VUONIMET 04815 285083 186058 4TS 10829
Showing 1 1o 10 of 50 eniries Prevics - ;1"4 5 Nem

Lise CirteC o Opion+C 10 copy thee link below Lo share.

SigCom LINCS

* A cloud-agonistic platform for serving, storing, and que
» >1 million signatures from

n@©) =

PubMed Geneshot

° LlNCS Mimickers
. . A
* GTEx (Genotype-Tissue Expression) —
« Signatures of aging Enrichr Gene —
; : Set =
* GEO (Gene Expression Omnibus) =
*  RNA-seq signatures automatically extracted from GEO SigCom LINCS e
» CREEDS (Crowd Extracted Expression of Differential Signatures) Metadata Search @ e —
« Participants extracted signatures from GEO Single =
Gene I~ rE—
ARCHS4 —a
— ~1,000,000
Million
/Down
A s (“:rne Sets Signatures

https://maayanlab.cloud/sigcom-lincs SR

A

Evangelista, et al. NAR 2022 43

=21 -



SigCom LINCS

Up Ganes

O SingwGaneSet @ LovDown Gane Sets

Query

Down Ganes

Clh bt 7y a1 waaemie of L ard v e sty

1113059
Seratures

353
Cotlnes

STATY / MAPKE | ACED 1 naseurTsh | e IusaiT
o,
n -
an 33866
Outanets Semall mclecubes
2 v
7 4957
Data and Sigratire Generation Centery ANRNAS
® -

performing single pene search for Co-expressed penes using the input form below.

o o
Cormiate Wi the Guaned gene based 0n NA-seq Co-axzression date fom ARCHSA

7492
CRISPR bnockouts

=

4082

Gene over expressions,

329
Uganch

Signature Similarity Search Results

St

sl Atomatic ke GEO BNA sen

UINES L1000 Chemical

o 2 e

-

......

MELFOS...

HER293
HEKZ93
MCF 104
YAPC
VCAP
HEC251

Evangelista, et al. NAR 2022

44

Appyters

« Transform Jupyter Notebooks into lightweight, fully functional, standalo
web-based bioinformatics applications

* Enable reusable workflows for
+ Customized machine learning pipelines

* Analyzing omics data

 Producing publishable figures and interactive visual

HHHH

Construct Jupyter
(- Notebook Meta-
Report

CSV —

User SUI;mit
Data and
Parameters

l Compile
nJ

A

Cﬁstoniized
& Persistent
Report

LIS

Appyter

Clarke DJB et al. Patterns (2021)
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Appyter Cataolog

» Integrates all available Appyters (>100) into a  Aappyters
* Github pull requests
+ Standardized, machine-validatable requirements o e e e e e e

* Allows for categorization and search é. it

* https://appyters.maayanlab.cloud N Wl F———
— i S
== mm— o
= -] L]
e

L E
= Clarke DJB et al. Patterns (2021) 46

URL: https://appyters.maayanlab.

Bulk RNA-seq Analysis Appyter

Differential Gene
Visualization pression Analysis

Differential Gene Ex
pression

)

Upload users dataset
s
(.csv, .txt format files)

Data Preprocessing

. Bulk RNA-seq Analysis

-23-



Input for Bulk RNA-seq Analysis Appyter

Series GSE154613 Query DataSets for GSE154613

Status Public on Jul 17, 2020

Title Modulating the transcriptional landscape of SARS-CoV-2 as an effective
method for developing antiviral compounds

Organism Homo sapiens

Experiment type  Expression profiling by high throughput sequencing

Summary The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) has imposed a significant burden on the human population. To understand
the virus and the disease it causes we sought to interfere with the
transcriptional response of the infected host. Utilizing the expression pattern of
SARS-CoV-2-infected cells, we identified a region in gene expression space
that was unique to virus infection and inversely proportional to the
transcriptional footprint of known compounds characterized in the Library of
Integrated Network-based Cellular Signatures (LINCS). Here we demonstrate
the successful identification of compounds that display efficacy in blocking
SARS-CoV-2 replication based on their ability to counteract the virus-induced
transcriptional landscape. These compounds were found to potently reduce
viral load despite having no impact on viral entry or modulation of the host
antiviral response in the absence of virus. RNA-Seq profiling implicated the
induction of the cholesterol biosynthesis pathway as the underlying mechanism
of inhibition and suggested that targeting this aspect of host biology may
significantly reduce SARS-CoV-2 viral load. L E

URL: https://appyters.maayanlab.cloud/#/Bulk RNA seq

URL: https://appyt lab.ck
o
Input or Bu RNA—seq Ana ySIS Appyter
Supplementary file Size d File type/|
GSE154613 RAW.tar 7.6 Mb (http)(custom) TAR (of TXT)
A B C D E F
SRA Run Selector @ , .
Raw data are available in SRA 2 pOXLILL 0 o 1 ‘,' o o
Processed data provided as supplementary file 3 WASHIP 2 68 15 1w S8 108
4 FAMI3BA 0 0 0 o 0 [
Custom GSE154613_RAW.tar archive: 5 FAMI3ER o a o o o o
Supplementary file File size & |onaFs 9 2 9 9 0 o
BT\ 15 VA P P T E_ Ul UYL e VUL S YGHEO AL E  aaere e 7 10729737 1 5 5 3 13 3
[ GSM4675765_ACE2-A549_Amoldipine_drugonly_3.counts.genes.txt.gz 116.2 Kb AglOCHYI AT L o L a ] L]
9 LOC1001320 L] o o o L] o
B GSM4675766_ACE2-A549_Berbamine_COV2_1.counts.genes.txt.gz 117.7 Kb 10 LOC1001333 34 79 33 29 53 T4
[ GSMAa675767_ACE2-A549_Berbamine_COVZ_2.counts.genes.txt.gz 117.2 Kb i; g::::: : g g E : :
GSM46757687ACEZ-A54973&rbamineﬁCDVZﬁ&cuunm.genes.txt.gz 116.8 Kb 13 OReF2 0 o o o o o
[ GsMa675769_ACE2-A549-Berbamine-drugonly-1.counts.genes.txt.gz 114.4 Kb 14 | LOC1002680 12 6 12 0 43 %
15 LNDOOLIS 2 ] 3 5 13 1
] GSM4675770_ACE2-A549-Berbamine-drugonly-2.counts.genes. txt.gz 116.3 Kb 15 LOCE4383T 169 238 166 138 248 2856
[ GSM4675771_ACE2-A549-Berbamine-drugonly-3.counts.genes. txt.gz 114.5 Kb 17 FAMMIC [ o ] ] ] o
1 GSM4675772_ACE2-A549-DMS0-COV2-1.counts.genes. xt.gz 116.1 Kb A M SRTI0N 4 s i 3 1 Bt
-~ 9 9 19 SAMDIL 156 410 19 15 525 420
B GSM4675773_ACE2-A549-DMS0O-COV2-2.COUNS.genes.txt.gz 116.3 Kb 20 |NOC2L 525 1457 829 833 1908 1974
[ GSM4675774_ACE2-A549-DMSO-COV2-3.counts.genes.txt.gz 116.5 Kb 21 KLY L3 131 45 43 152 151
22 PLEKHNI 19 34 1 14 45 49
E\GSM46757757ACEZ-A5497Loper'am\deico\!271.munu.genes.txt.gz 117.3 Kb 23 Clorf170 3 g A & 1 18
[[]GSM4675776_ACE2-A549_Loperamide_COV2_2.counts.genes.txt.gz 117.2 Kb
[]GSM4675777_ACE2-A549_Loperamide_COV2_3.counts.genes.txt.gz 117.6 Kb Sample_id Class
| GsM4675778_ACE2-A549-Loperamide-drugonly-1.counts.genes.txt.gz 116.0 Kb GSM4E75774 ctrl
O GSM4675779_ACE2-A549-Loperamide-drugonly-2.counts.genes.txt.gz 115.6 Kb GSMABTSTET Case
[l GSM4675780_ACE2-A549-Loperamide-drugonly-3.counts.genes. txt.gz 115.1 Kb GSM4675773 Ctrl
[)GSMA4675781_ACE2-A549-Mock-1.counts.genes.txt.gz 116.7 Kb | GSMAE75772 Ctrl -
[ GSM4675782_ACE2-A549-Mock-2.counts.genes. txt.gz 116.6 Kb GSMA4E75766 Case
[ G5M4675783_ACE2-A549-Mock-3.counts.genes. txt.gz 115.9 Kb GSM4675768 Case
[ select All 6 file(s), 700.7 Kb
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Input for Bulk RNA-seq Analysis Appyter

. The bulk RNA-seq analysis Appyter starts with an expression matrix

aw read counts and metadata
~-* Bulk RNA-seq Analysis

Ve An appyter for the analysis and visualization of your bulk RNA sequencing datasets.
Load your Data
wQ
=== Load your metadata and ion data in c separated formats. Genes should be in rows and samples shoud be in columns
GSE154613_meta.csv Browse

Meta data file (csvor tsv) ©:  (———

Load example: GSE70466_example_metadata bt

GSE154613_exprosy Browse

RNA-seq data file csvor tsv) ©: (I EE—

Load example: GSETD4EE_example_expression bt

Class column name in metadata @ : cell line

Sample ID column name in metadata Sample_geo.accession
9. -

URL: https://appyters.maayanlab.cloud/#/Bulk RNA seq

Input for Bulk RNA-seq Analysis Appyter

Select Differentially Exprssed Gene Analysis Parameters
@ Select Normalization Methods —

—
Differential expression analysis

0. limma
Filter genes? L] E Mo Differential expression analysis Volcano plot
plotting method @
Low expression threshold @ 03 I'“Q‘ Select Visualization Parameters -
— P-value threshold ©: 0.05
logCPM normalization? @ Al No logFC threshold @ 15
Interactive plots? @ No
lag normalization? @ Yes m Maximum genes for Enrichr @ 500
Visualization Methods @ PCA
Z normalization? @ m Mo Gene Ontology
. . - Enrichr Libraries (upto 2): Petay
Genes for Dimension Reduction @ : 2500 et (upa 2k Kinase
Quantile normalization? L] Yes Transcription Factor
Gene List for Clustergrammer None Top ranked gene sets ©@: 15
(Optional) @:
Small molecule analysis method ©. L1000FWD
Genes for clustergrammer . 800 Genes for L1000CDS2 or E
so0 M :
L1000FWD ©:
Top ranked drugs from L1000CDS2 7
or L1000FWD ©:
appyters.maayanlab.cloud/#/Bulk RNA seq

- 25 -



Results from Bulk RNA-seq Analysis Appyter

3D PCA plot for samples

of

Fa s ©
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Figure 1. 30 UmﬁlhmmeﬂOW having largest variance. The figure displays an interactive, three-dimensional .
scatter plot of the data. Each point represents an RNA-seq sample. Samples with similar gene expression profiles are cioser in the Py o it The g _— A G ool
three-dimensional space. If provided, sample groups are indicated using different colors, alfowing for easter interpretation of the results. gene, every e ik mwmmw . The heatmap additionall festures
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Results from Bulk RNA-seq Analysis Appyter
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Traditional Drug Discovery Pipeline: Ligand-based Drug »
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Introduction

* Ligand-based drug discovery
 To find common structures among prototype drugs that bind to a desired target
+ To design structural analogs of the prototype drugs, and evaluate them

=y W . g7
; r\u—é—é/s\ CHy ; - ;
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A

Lactam o
ng

Target discovery is essential

« Unable to work for undruggable targets
Limited range of drug candidates: excludes drug candidates that may have similar effects despite binding to
another protein

Developed a drug discovery model that can find functional analogs

C|s

="/
https://application.wiley-vch.de/books/sample/3527312579_t01pdf

Gene Expression-based Drug Discovery

+ Over 3 million gene expression profiles before and -;;__g
treatments, shRNA knockdown, CRISPR knockout, etc. and
million gene signatures

+ User's up- and down-regulated genes in the signature DB to

B up - find chemical compounds/shRNA/CRISPR that can mimic or
w: : w -~ reverse them
8 oo  Provide transcriptional response-based similarity scores of

compound pairs (CMap Scores)

Hogative

T

. * However, as a drug repurposing platform, it is difficult to
discover novel drug candidates

[

i
3
]
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Approach
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Results

I Example pairs with similar structures but low actual CMap scores
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Drug discovery case study 1: Haloperidol

* Haloperidol
. FDA—ap'proved drug for schlz‘ophrenla ARl S
« Dopamine receptor antagonist e ke

them, and it blocks the ability
 Structure: of dopamine to activate them.

F
Chlorpromazine
Dopamine
o receptor Y .
cl \ < 4
(o]
HO

The blockage of

dopamine receptors
by chlorpromazine sends
a feedback signal to the
presynaptic neuron, which
increases the release of
dopamine.

The feedback signal increases
the release of dopamine, which is p Dopamine

broken down in the synapse, resulting metabolites
in elevated levels of dop Dopamine

metabolites.

Drug discovery case study 1: Haloperidol

Table 2. Top drug candidates for Haloperidol from the ZINC15 database

ZINC15 ID ZINC15 name Predicted similarity Similarity # of articles Description
score by ReSimNet  score by ECFP

ZINC2516029 Chlorohaloperidol 0.995 0.884 [ Chlorohaloperidol targets the Dopamine D2 receptor” -

ZINC601270 Bromperidol 0.967 0.792 66 Bromperidol is an FDA-approved drug for dementia, it
depression, schizophrenia, anxiety disorders and -
psychosomatic disorders (Yasui-Furukori
et al., 2002)

ZINC4214827 Amiperone 0.961 0.704 0 Amiperone targets the Dopamine D3 recepror and D3 is

a potential targer of Parkinson’s disease and
schizophrenia (Varady et al., 2003)

ZINCS538026 Moperone 0.955 0.792 11 Moperone is a Dopamine D2 receptor antagonist"
ZINC335851465 Cyantraniliprole 0.946 0.098 0 —_
ZINC1481990 Budipine 0.942 0.172 1 Budipine is used in the treatment of Parkinson’s

disease (Klockgether et al., 1993)

ZINC12494203  B-Hyodeoxycholate 0.938 0.113 0 _

ZINC3824281 Ganaxolone 0.933 0.129 1 Ganaxolone is one of neurosteroids and is used for
epilepsy (Nohria and Giller, 2007)

ZINC3812988 Butorphanol 0.933 0.200 9 Butorphanol is a neuropsychiatric agent (lyengar
etal., 1987)

ZINC2041178  2,3-Dibromopropanol 0.93 0.158 0 —

"https://pubchem.ncbi.nlm.nih.govicompound/173712#section=ChEMBL-Target-Tree.
Pheeps:/www kegg.ip/dbget-bin/www_bget? D01105. L

Bioinformatics, 2019
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Drug discovery case study 2: Selumetinib

 Selumetinib
» FDA-approved cancer drug
* MoA: MEK1/2 inhibitor
* Structure:

Extraceliular

SO
/

Table S 11. Top drug candidates for Selumetinib from the ZINC15 dataset. There
were only two drug candidates with a seore > 0.9,

Predicted Similarity
ZINC15 ID ZINC15 | similarity "0 o o #of Description
name score by ECFP articles
ReSimNet

Binimetinib is a MEK1/2
inhibitor [1]

Buparlisib is a PISK
inhibitor. PI3K is in a

pathway parallel to the ¥
MEK pathway [2] s

ZINC3R8460704  binimetinib 0.993 0.841 4

ZINC43154039  buparlisib 0.937 0.084 2

&

Bioinformatics \201 9

Jeon et al BMC Bioinformatics  (2022) 23:374
httpsy//dol.org/10,1186/512859-022-04895-5

BMC Bioinformatics

Transforming L1000 profiles to RNA-seq-like 2
profiles with deep learning

Minji Jeon'?, Zhuerui Xie', John E. Evangelista', Megan L Wojciechowicz', Daniel ). B. Clarke' and

Avi Maayan'
i OO Abstract
7 Depactment of Phammbcological The L1000 technology, a cost-effective high-throughput transcriptomics technology,

Sciances, Mouwnt Sinai Center

for Bloinfoermatics, kcahn School
of Medicine at Mount Sinal, One
Gustave L Levy Place, Box 1603,
New ork, NY 10029, USA

? Department of Medicine, Korea
University College of Medicine,
Seoul Repubic of Korea

has been applied to profile a collection of human cell lines for their gene expression
response to > 30,000 chemical and genetic perturbations. In total, there are currently
over 3 million available L1000 profiles, Such a dataset is invaluable for the discovery of
drug and target candidates and for inferring mechanisms of action for small molecules.
The L1000 assay only measures the mRNA expression of 978 landmark genes while
11,350 additional genes are computationally reliably inferred. The lack of full genome
coverage |imits knowledge discovery for half of the human protein coding genes, and
the potential for integration with other transcriptomics profiling data. Here we present
aDeep Learning two-step model that transforms L1000 profiles 1o RNA-seq-ike pro-
files. The input to the model are the measured 978 landmark genes while the output

is a vector of 23,614 ANA-seq-like gene expression profiles. The model first transforms
the landmark genes into RNA-seq-like 978 gene profiles using a modified CycleGAN
model applied to unpaired data. The transformed 978 RNA-seq-like landmark genes are
then extrapolated into the full genome space with a fully connected neural network
model. The two-step model achieves 0.914 Pearson’s comelation coefficients and 1.167
root mean square errors when tested on a published paired L1000/RNA-seq dataset
produced by the LINCS and GTEx pregrams. The processed RNA-seq-like profiles are
made available for download. signature search, and gene centric reverse search with
unigque case studies.

Keywords: L1000, RNA-seq, Gene expression translation, Generative adversarial
netwarks
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Introduction — The LINCS L1000 Data

* L1000 assay
* The L1000 assay only measures the mRNA expre L1000 data processing
» An additional 11,350 genes are computationally .,

« L1000 data a o g q
« An expression profile is generated from a single bA A

DIFFERENTIAL
DECONVOLUTION  NORMALIZATION  INFERENCE EXPRESSION SIGNATURE

T TR
l i | ;!4-
L) B *

point el Levl2 Levl 33 Level3 Leveid Levls
« Signatures (differentially expressed genes) are ce.
plate Perturbagens Signatures
>80K

Annotated Core cell lines (9)

Small molecule Genetic

Unannotated Variable lines >20

\
—
.‘ )
=
-~ Discover (Reference)

https://lincsproject.org/LINCS/tools/workflows/find-the-best-place-to-obtain-the-lincs-11000-da,

Introduction - Limitations & Challenges
Limitations of the L1000 Data
* Half of the protein-coding gene are missing from the L1000 data
* This limits knowledge discovery about those missing genes

« This limits the potential for integration of the CMap data with other transcriptomics pr
ofiling data

Project Challenges

« Transform L1000 profiles to RNA-seq-like profiles at the full genome scale with Deep Learning
* How can we train a model when there are not a lot paired L1000 and RNA-seq profiles for training?
* How can we demonstrate that predicted RNA-seq-like profiles contain knowledge?

* What new applications the predicted RNA-seqg-like profiles can provide and how we can demonstrate these
applications as use cases?

How the trained model compares to other published models and simpler baseline models?
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Methods - CycleGAN: Supervised Learning for Unpaired

* CycleGAN (Zhu and Park et al.): An approach for learning to translate a
age from a source domain X to a target domain Y in the absence of pair
samples

Monet T Photos

Real Image Reconstructed Image
Gua generates a reconstructed image of domain A

This makes the shape to be maintained
when Gas generates a horie image from the zebra.

Real Image in domain B

L (2))
Zhu and Park et aIT'IJ\/ 2017

Step 2

Step 1 4

978 Landmark Genes

23,614 Genes

Real Profile Generated Profile  p a— Reconstructed Profile Generated Profile
in L1000 Domain in RNA-seq Domain M inL1000 Domain  “1%%%| | in RNA-seq Domain
j ! U J
!
Real Profile Real Profile [

in RNA-seq Domain in L1000 Domain J

BMC Bioinformatics, 2022
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Results - GTEx Paired Samples

+ Evaluation Metrics: The average of PCC and RMSE for each sample
. Step 1 Vielin plots for samples *

Predicted RNA-seq - Real RNA-
Predicted RNA-seq - Real RNA-seq

]
" e — s
\nput LL0OD - Predicted RNA 54 4 —’_. Input L1000 - Predicted ANA-seq 2|

Input LLOGO - Real RNA seq - + Input L1000 - Real RNA-seq

Predicted RNA-seq - Random Real RNA-seq |  —<mm——

Violin plots for samples

Predicted RNA-seq - Random Real RNA-seq -

02 04 05 08 10 0 5 1 15 » %
pec RMSE
Violin plots for samples Violin plots for samples

« Step 2

‘Pﬁamu RNA-seq - Real RNAs2q )

’ Predicted RMA-seq - Real Rmm}- ’

| RNA 56 - Random Real RNA-s20 _‘_ Predicted RNA-seq - Random Real RNA-seq | ’

C )
060 065 070 075 080 085 090 095 100 0 5 10 15 ) s N Y
s BMC'Bioinformatics, 2022

Results - PCA of GTEx L1000-RNA-seq Paired Sam

* GTEx and LINCS profiled the same postmortem tissue samples using L1000 and RNA-
+ 2,929 samples from 53 tissues downloaded from GSE92743

» PCA plot of real RNA-seq profiles, predicted RNA-seq profiles, and original L1000 profiles fr

om colon in GTEx using 11,780 common genes !j:.
Colon - Transverse
’ @ Real RNA-seq
- \T.' » Predicted RNA-seq
L @ Original L1000
L | L]
oo "
L] |~
e S8e ;%
° *3e o
t e
g
|
0 100 200 300
E.. “ A
BMC Bioinformatics, 2022
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Results — Gene Centric Signature Reverse Search
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ARTICLE

De novo generation of hit-like molecules from gene
expression signatures using artificial intelligence

Oscar Méndez-Lucio"2*, Benoit Baillif @, Djork-Arné Clevert?, David Rouquié"®* & Joerg Wichard®*

Finding new molecules with a desired biological activity is an extremely difficult task. In this
context, artificial intelligence and generative models have been used for molecular de novo
design and compound optimization. Herein, we report a generative model that bridges sys-
tems biology and molecular design, conditioning a generative adversarial network with
transcriptomic data. By doing so, we can automatically design molecules that have a high
probability to induce a desired transcriptomic profile. As long as the gene expression sig-
nature of the desired state is provided, this model is able to design active-like molecules for
desired targets without any previous target annotation of the training compounds. Molecules
designed by this model are more similar to active compounds than the ones identified by
similarity of gene expression signatures. Overall, this method represents an alternative
approach to bridge chemistry and biology in the long and difficult road of drug discovery.
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Fig. 1 Graphical representation of the models and pipeline used in the study. Molecules were encoded using a model that transforms the canonical Fig. 3 Molecules generated from target knock-out gene expression signatures. 3 Dsirxtion 0f Sty between afl penerated molec s and hew
SMILES of a molecule into a latent representation that can be later decoded into the set of grammar production rules needed ta reconstruct the original =" "™ SIRL Nt iy AR P s Morans Prgwpdes e Soge) “"."‘F‘:"“ Stage ¥ in grean. b Chorrical siuckres:of some
SMILES (a). The generative adversarial network in b has a Stage | where the generator (Gg in blue) takes the desired gene expression signature together

with a vector of random noise to produce a malecular representation that can be decoded into SMILES using the decoder (in red). The discriminator (D in

purple) calculates the probability of the molecular representation to be a real molecule and the conditional network (f, in green) calculates the probability

of the molecular representation to match the gene expression signature. In Stage I, the generator (G, in blue) takes as input the desired gene expression

signature together with a molecular representation (e.g. the one produced by Go) to repeat the process. The general pipefine is represented in € where the

generative adversarial network is trained with -20 K compounds from the L1000 dataset™ (see Methods for details) to be able to generate compounds

from a desired gene expression signature during the prediction phase.

Bioinformatics, 37, 2021, i376-i382
doi: 10.1093/bioinformatics/btab275
ISMB/ECCE 2021

OXFORD

Predicting mechanism of action of novel compounds
using compound structure and transcriptomic signature
coembedding

Gwanghoon Jang', Sungjoon Park’*, Sanghoon Lee', Sunkyu Kim’, Sejeong Park’
and Jaewoo Kang ® "2+

'Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea and and “Interdisciplinary Graduate
Program in Bioinformatics, Korea University, Seoul, Republic of Korea

*To whom d should be add d.

Abstract

Motivation: Identifying mechanism of actions (MoA) of novel compounds is crucial in drug discovery. Careful under-
standing of MoA can avoid potential side effects of drug candidates. Efforts have been made to identify MoA using
the transcriptomic signatures induced by compounds. However, these approaches fail to reveal MoAs in the ab-
sence of actual compound signatures.

Results: We present MoAble, which predicts MoAs without requiring compound signatures. We train a deep learn-
ing-based coembedding model to map compound signatures and compound structure into the same embedding
space. The model generates low-dimensional compound signature representation from the compound structures.
To predict MoAs, pathway enrichment analysis is performed based on the connectivity between embedding vectors
of compounds and those of genetic perturbation. Results show that MoAble is comparable to the methods that use
actual compound signatures. We demonstrate that MoAble can be used to reveal MoAs of novel compounds with-
out measuring compound signatures with the same prediction accuracy as that with measuring them.

Availability and impl ion: MoAble is available at https:/github.com/dmis-lab/moable
" l:ontact sungjoonpark@korea ac.kr or kangj@korea.ac.kr E\
Supg tary information: Supplementary data are available at Bioinformatics online. ™
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DeepSide: A Deep Learning Approach
for Drug Side Effect Prediction

Onur Can Uner™, Halil Ibrahim Kuru™, R. Gokberk Cinbis™, Oznur Tastan™, and A. Ercument Cicek ™

Abstract—Drug failures due to unforeseen adverse effects at clinical trials pose health risks for the participants and lead to substantial
financial losses. Side effect prediction algorithms have the potential to guide the drug design process. LINCS L1000 dataset provides a vast
resource of cell line gene expression data perturbed by different drugs and creates a knowledge base for context specific features. The
state-of-the-art approach that aims at using context specific information relies on only the high-quality experiments in LINCS L1000 and
discards a large portion of the experiments. In this study, our goal is to boost the prediction performance by utilizing this data to its full extent.
We experiment with 5 deep learning architectures. We find that a multi-modal architecture produces the best predictive performance among
multi-layer perceptron-based architectures when drug chemical structure (CS), and the full set of drug perturbed gene expression profiles
(GEX) are used as modalities. Overall, we observe that the CS is more informative than the GEX. A convolutional neural network-based
model that uses only SMILES string representation of the drugs achieves the best results and provides 13.0% macro-AUC and 3.1%
micro-AUC improvements over the state-of-the-art. We also show that the model is able to predict side effect-drug pairs that are reported
in the literature but was missing in the ground truth side effect dataset. DeepSide is available at http://github.com/OnurUner/DeepSide.

Index Terms—Drug side effect prediction, deep learning, LINCS

ES

2020 IEEE International Conference on Big Data and Smart Computing (BigComp)

A Drug-induced Liver Injury Prediction Model
using Transcriptional Response Data with Graph
Neural Network

Doyeong Hwang*, Minji Jeon**, Jaewoo Kang*'®
*Department of Computer Science and Engineering
“Interdisciplinary Graduate Program in Bioinformatics
Korea University
Seoul, Republic of Korea
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§Corresponding author

Abstract—Drug-Induced Liver Injury (DILI) is a major cause
of failed drug candidates in clinical trials and withdrawal of
approved drugs from the market. Therefore, machine learning-
based DILI prediction can be key in increasing the success rate
of drug discovery because drug candidates that are predicted
to potentially induce liver injury can be rejected before clinical
trials. However, existing DILI prediction models mainly focus on
the chemical structures of drugs. Since we cannot determine
whether a drug will cause liver injury based solely on its
structure, DILI prediction based on the transcriptional effect
of a drug on a cell is necessary.

Several machine learning models trained on datasets such
as Liver Toxicity Knowledge Base (LTKB) [4] and Open TG-
GATEs [5] were previously proposed for DILI prediction.
Most of the previously proposed machine learning models are
trained on drug structure information for predicting DILI [6]-
[9]. However, such models used for DILI prediction do not
consider genetic information or the structures and complex
biological mechanisms of drugs [10]. Therefore, these models
cannot predict whether a drug will cause liver injury based
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Fig. 1. The overall architecture of GLIT. The structure of a drug, the drug-induced gene expression level, and the dosage and duration of drug administration r ;
are used as inputs for GLIT. A drug embedding vector is extracted from the last layer of a neural network with three layers, and a drug-induced gene =4

expression embedding vector is extracted from a graph neural network using a biological knowledge graph called OmniPath. The two embedding vectors are
concatenated with the dosage and duration of drug administration information, and fed to the prediction layers of GLIT to predict DILL
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DeSIDE-DDI: interpretable prediction 2
of drug-drug interactions using drug-induced
gene expressions

Eunyoung Kim and Hojung Nam'®

Abstract

Adverse drug-drug interaction (DDI) is a major concern to polypharmacy due to its unexpected adverse side effects
and must be identified at an early stage of drug discovery and development. Many computational methods have
been proposed for this purpose, but most require specific types of information, or they have less concern in inter-
pretation on underlying genes. We propose a deep learning-based framework for DD prediction with drug-induced
gene expression signatures so that the model can provide the expression level of interpretability for DDls. The model
engineers dynamic drug features using a gating mechanism that mimics the co-administration effects by imposing
attention to genes. Also, each side-effect is projected into a latent space through translating embedding. As a result,
the model achieved an AUC of 0.889 and an AUPR of 0.915 in unseen interaction prediction, which is competitively
very accurate and outperforms other state-of-the-art methods, Furthermore, it can predict potential DDls with new
compounds not used in training. In conclusion, using drug-induced gene expression signatures followed by gating
and translating embedding can increase DDI prediction accuracy while providing madel interpretability. The source /
code is available on GitHub (https://github.com/GIST-CSBL/DeSIDE-DDI). E

Keywords: Drug-drug interaction, Polypharmacy side effects, In silico prediction, Deep learning
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Abstract

Single-cell rranscriptomics enabled the study of cellular heterogeneity in response

to perturbations at the resolution of individual cells. However, scaling high-

throughput screens (HTSs) to measure cellular responses for many drugs remains

a challenge due to technical limitations and, more importantly, the cast of such

multiplexed experiments. Thus, transferring information from routinely performed

bulk RNA HTS is required to enrich single-cell data meaningfully. We introduce

chemCPA, a new encoder-decoder architecture to study the perturbational effects

of unseen drugs. We combine the model with an architecture surgery for transfer

learning and demonstrate how training on existing bulk RNA HTS datasets can

improve generalisation performance. Better generalisation reduces the need for i
extensive and costly screens al single-cell resolution. We envision that our pro- .
posed method will facilitate more efficient experiment designs through its ability 84
to generate in-silico hypotheses, ultimately accelerating drug discovery.

(1) Encoder-Decoder: (2) Attribute embeddings: (3) Adversarial classifiers:
Cell lines 1 Paschincstat
- [ T—\ l Trassetinits
: p basal | | |gdrussff) . y : -
| ) | z A Table 1: Comparison of multiple models on their performance on generalisation o unseen drug-
l i | J IJ | Plwogiridol  cOvariate combinations for dosage values of 1 uM and 10 uM.
ks 4 T Dosc  Model Elr?]all E[r*] DEGs Medianr?all Median r* DEGs
Ti H i z‘-“t] Perturbation network P, [ Je. Buscline 0.69 051 0.82 0.62
1 L T vasal || | 4cev [I§] : seGen 0.73 059 077 0.68
| I . 2 I ) | 2 1M CPA 0.72 0.54 0.86 0.67
Kii i o chemCPA 074 0.60 0.86 0.66
@ chemCPA pretrained 0.7 0.68 0.85 0.76
Baseline 0.50 0.29 0.48 0.12
seGen 0.62 0.47 0.66 0.49
10uM  CPA 0.54 0.34 0.52 0.26
Figure 1: Architecture of chemCPA. The model consists of three parts: (1) the encoder-decoder c::e“‘gm ained 3}; 3-2: 3;1 gg‘;
architecure, (2) the attribute embeddings, and (3) the adversarial classifiers. The molecule encoder S e - <
G can be any graph- or language-based model as long as it generates fixed-sized embeddings hgrygs-
The MLPs S and M are trained to map the embeddings to the perturbational latent space. There,

24, is added to the basal state z; and the covariate embedding z. . In this work, the latter always
corresponds to cell lines. The basal state z; = Ej(x;) is trained to be invariant through adversarial

classifiers A, and the decoder Dy, gives rise to the Gaussian likelihood N (z; | j1;, 07).
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DESeq2

* Models estimate parameters (mean and dispersion) to describe count data
distribution accurately.

« Dispersion parameter a affects variance; edgeR and DESeq2 employ similar
empirical Bayes methods to shrink o towards similar-gene dispersions,
enhancing differential expression test results.

« DESeq2 workflow:

Normalize read counts by computing size factors, addressing differences in library sizes
and library compositions.

+ Calculate dispersion estimate for each gene.

+ Plot dispersion estimates of genes against mean normalized counts,
and fit a line.

 Shrunk dispersion values of each gene towards the fitted line.

* A Generalized Linear Model accounts for confounding variables and negative binomial
distribution, fitting count data.

* For a contrast (e.g., drug-A treated vs. untreated), differential expression test assesses |
og fold change of normalized gene counts.

alues are adjusted for multiple testing.
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DESeq2: Normalization

» DESeq@?2 expects as an input a matrix of raw counts (un-normalized cour

« These counts are supposed to reflect gene abundance (what we are
interested in)

* But they are also dependent on other less interesting factors such as gene

| QSRR I DR S | S, eS| S S . S PP [ Y O [ S R T Sy
Sample 1 Sample 2 Sample1 Sampie 2 _ Contrel cells _Tumdalls
= = s || o oo || ——
| _Genel o L _Genel B o i e (i
= = Eaéijgi s g T — T E——

e o —— i == R h _ B _.:‘:’:—:;u-: =]
= e e e ;.;;——F'.;'=1‘:-_—._?=__:——E"; e
a1 — T " STEsge T A ‘1???55?!}%E=E§=Eégéi'

Sequencing depth Library composition

=1

DESeq2: Normalization

Stepl
Geometric

- Step 1: DESeq2 creates a pseudo-refereress st wme e e wme e Couw

Genel 807 1240 1080 ns2 1004 B8] 102095158

Wlse geometrlc mean (for each gene)_ Gene2 1267 2093 1816 1552 1794 1717 e 1GHGE4TEL
Ganed 1434 2467 1902 2159 1811 1672 w— 187883812

Gened 1098 1776 1429 1561 1383 1263 e 140211723

— 3549451

* Step 2: For every gene in every sample, & S e e s e
sample are calculated. o |

Step2
« Step 3: The median value of all ratios fol
Cene samplel sample? sampled sampled sample’ samplef
scale factor for that sample. e e T Wi

Cene? 0.75119426 124092311 107669200 09201685 10636484 1.0179957

137164604

Geometric means

Genel 0.76323765 1.31304553 101232777 1.1451144 0.9638936 08859117

b Step 4 N o rm a | |Zed CO u nts Ca n be o bta I r Gened u‘.:rs!louz 1.‘26665!3! l:olelnu 1:113316! 0:936]65‘5 0.9007806

0.02817337 0.02817337 0.05634673 28.1733673 27.8352869 28.5114477

values in a g|Ven Samp|e by that sample e e S e e o D s O o

ka umpm sample2 sampled a1 mp|l§ samplef

5 di
§j = median T o i
i m m FACTORS 0-7731695 1.253789 1.01575 1153429 0.9848809 0.9100567
k‘»‘ v Raw counts
T

v=1 Scaling Factor

samplel umplhi sample3 sampled sample5 sampls '.,"
pt i b= (s b

Genel 1043,755554 989.0017578 1063.253362 1024.7705 1019413 970.2692

Gene2 1638.709154 1669.3302573 1787.840838 1385.5532 1821.540 1886.6957 / o W
Gene3 1854.703178 1967.6349488 1872.507310 1BT1E102 1836801 1837.2482 | b
Cened 1420128375 1416.5057435 1406.841717 1353.3560  1404.231 1387.8256

Genes 1.293377 0.7975821 1968988 866.5802 1003.167 1112.0186

Geneh 1411074733 1405.3395946 1349.741073 14322512 1231621 1385.6280
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DESeq2: Count Modeling

Sample1 Sample2 m

. \/ ot
C

H

sy
=
2
2 5 P
= _

* Normal distribution (X) o
. Fit Poisson
+ Continuous (X) distribution

* Number of cases is large

g * Probability of an event happening is low
s + Selecting mRNA from a large number of
&1 mRNA read

. M * mean = variance

T T T 1
0 200 400 600 800 1000

Frequency of gene

Number of observed reads (gene-wise) b d )

DESeq2: Count Modeling

» But RNA-seq data does not fit Poisson distribution
* variance # mean

* Negative Binomial distribution
* variance > mean

K;ij ~ NB(mean = u;j, dispersion = a;)

VAR(Kqj) = nij + o 135

K_ij = count of gene i for sample j
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DESeq2: Count Modeling

* Dispersion estimation

+ Dispersion: When comparing gene expression levels between groups, it is important
know also its within-group variability

» RNA-seq experiments typically have only few replicates
« It is difficult to estimate within-group variability
« Solution: pool information across genes with are expressed at similar level
+ assumes that genes with similar average expression strength have similar dispersion

100 o rr— - 0.1%

T T T T T T T |
T T T T T T 4 < 20|
01 1 10 100 1000 10 10° —
(2] 1 10 100 1000 10° 10° h
average normaiized count
average normalized count

DESeq2: Generalized linear model

» Generalized linear model:

lOQQ(qij) = ,80 — ,31. T j + €
o Hij
4 SizeFactor,

Bo is the log2 expression level in the reference (control samples)
B1 is the log2FC between treated and control cells

z;=0if sample j is the control sample

' z;=1if sample j is the treated sample S 8
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Characteristic Direction

» Characteristic Direction (Clark et al. 2014, BMC bioinformatics)
* Genes do not function in isolation but as part of a complex network of interactions
* This leads to significant correlations _
* Univariate approaches can miss some structure in the data i
+ Multivariate approaches are sensitive to the curse of dimensionality

gene,

gene,

Characteristic Direction

* Linear discriminant analysis
* Bayes rules for the classification probability

» The contribution of each b can be interpreted as quantifying the relative contribution s
of each component to the total differential expression giving the significance of the Iy
corresponding gene )

Linear classification boundary

Normal vector = direction of
characteristics in gene
expression data

if}le

i=1
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