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Curriculum Vitae

Speaker Name: Dongsup Kim, Ph.D.

» Personal Info

Name Dongsup Kim
Title Professor
Affiliation KAIST

» Contact Information

Address Department of Bio and Brain Engineering, KAIST, Daejeon
Email kds@kaist.ac.kr

Phone Number  042-350-4317

Research Interest

Structural bioinformatics and computational drug development

Educational Experience

1989 B.S., Seoul National University
1991 M.S., Seoul National University
1998 Ph.D., Brown University, USA

Professional Experience

1998-2000 Post-doc research fellow, University of Pennsylvania
2001-2002 Post-doc research fellow, Oak Ridge National Lab
2003- Professor, Department of Bio and Brain Engineering, KAIST

Selected Publications (5 maximum)

1. D. Yang, T. Chung, D. Kim, “DeepLUCIA: predicting tissue-specific chromatin loops using Deep
Learning-based Universal Chromatin Interaction Annotator”, Bioinformatics, 38:3501-3512 (2022)

2. HY. Kim, W. Jeon, D. Kim, “An enhanced variant effect predictor based on a deep generative
model and the Born-Again Networks”, Scientific Reports, 19127(2021)

3. H. Kim, D. Kim, “Prediction of mutation effects using a deep temporal convolutional network”,
Bioinformatics, 36:2047-2052 (2020)

4. A. Lee, D. Kim, "CRDS: Consensus Reverse Docking System for target fishing”, Bioinformatics,
36:959-960 (2020)

5. W. Jeon, D. Kim, “FP2VEC: a new molecular featurizer for learning molecular properties”,
Bioinformatics, 35:4979-4985 (2019)
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* Field of information technology that uses computers and
computer programs to facilitate the collection, storage,
analysis, and manipulation of large quantities of chemical
data

- 03 O| &
* Cheminformatics

* Chemoinformatics
* Chemical informatics

e Bioinformatics vs. Chemiformaics
* Biological data: Bioinformatics
* Chemical data: Cheminformatics

« SETOR UINE, =39, ..

Interdisciplinary

Informatics _ i, Chemistry

Library
Science

——

Drug - Computer
Discovery Science

Medicine Toxicology

Text Mining
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Bioinformatics Structural Biology Chemoinformatics and
Systems Biology
T

Target Lead
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Expression Analysis Function Prediction Structure Prediction Off-target Predictions

in silico Drug Discovery and Development Pipeline
Docking QSAR Combinatorial Chemistry Pharmacometrics ADME/Toxicity Predictions

e Computer-Aided Drug Design (CADD)

CADD
A

TR

e Library design ® InsilicoADMET

e Dockingscoring * QSAR prediction
*3D-QSAR * Physiologically-based

e Pharmacophore  * Stn.lct}lre-.based phamacokinetic (PBPK)
® Target flexibility ~ COPtimization simulations

Disease-related
genomics

i

* Bioinformatics ® Target

e Reverse docking druggability
* Protein structure  ® Tool compound ® De novo design

prediction design




Lead Discovery & Optimization

e Compound library design

* Virtual screening

* Docking

* Pharmacophore modeling

* QSAR (Quantitative Structure Activity Relationship)
* De novo design

JbAb A3

A Virtual screening workflow

Library
preparation

Filtering
Structure- and
ligand-based
filtering

Experimental
validation
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Structure-based
virtual screening

@ Structure-based
pharmacophore modeling

Q Molecular dynamics simulation

© Molecular docking

Ligand-based
virtual screening

e Ligand-based
pharmacophore modeling

eMachine learning algorithms

€© 3D shape similarity search
@ Molecular fingerprints

Molecular structures

* Linear notation
* SMILES
* InChl, InChiIKey

e Connection table method

* Molfile
e SDF
e MOL2

https://www.ebi.ac.uk/chembldb/compound/inspect/CHEMBL413

http://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5284616&loc=ec_rcs




Linear Notation

* Line notations represent structures as a linear

string of alphanumeric symbols.

* Their compactness was an advantage in the early
days of cheminformatics when storage space was at

a premium.

* Even nowadays, it can be faster to enter a structure
as a notation instead of using a chemical structure

drawing program.

SMILES

e Simplified Molecular Input Line Entry System

* A given chemical structure can have many
valid and unambiguous representations (e.g.,
it is possible to start with any atom to derive a
SMILES string).

* But for comparison purposes it is desirable to
have a unique representation known as the
‘canonical’ one.

* Morgan algorithm: iterative calculation of
connectivity value of each atom

e http://www.daylight.com/dayhtml/doc/theor
y/theory.smiles.html

CC1=CC(Br)CCC1




Atoms

* Represented by their atomic symbols: C, N, O, and
P

* The second letter of two-character atomic symbols
must be in lower case: Cl (not CL), Br (not BR)

e Each non-hydrogen atom is enclosed in square
brackets: [Au] or [Fe]

* Square brackets can be omitted for elements in the
organic subset (B, C,N, O, P, S, F, Cl, Br, and 1), if the
proper number of “implicit” hydrogen atoms is
assumed: BH; > B,CH, > C,NH; 2 N,H,0 > O

Bonds

Single bond = “-” (can be omitted)
Double bond > “=“

Triple bond > “#”

Aromatic bond 2 “:” (can be omitted)

Examples
« CH,~>C
* CH,-CH, = CC (or C-C)
* CH,=CH, > C=C
* CH=CH > C#C
* CH,OCH, = COC
* CH,CH,OH = CCO
* CH,CH=0 - CC=0
* HC=N - C#N




Branches

* Specified by enclosures in parentheses
e Can be nested or stacked

NH.
CH. l'l:<
i!H OH Hai C{"
- Gl SR
Hal c CH—CH,
/N
H,C NH,
CC(C)CO

CC(CCC(=O)N)CN

Rings

* Represented by breaking one single or aromatic
bond in each ring, designating this ring-closure
point with a digit

Cyclohexane

CH; 5, A
H.C~  CHy g Thg
| = | | =

C

HyC CH; o) C ol _
S ey i i
& HE

=y elgceacl

-

-

il

Benzene —» C1=C-C=C-C=C1 OR c1ccccc1

Note: Lower-case letters represent aromaticity.




Canonical SMILES

* Multiple SMILES representations exist for a given
molecule.

|II

* One “canonical” SMILES is selected among them: Morgan

algorithm

GHe “¢1(C)ecceet

cle(C)cceel
c1cc(C)cect
c1cce(C)ect
cleoccii)cd
cleececeG

Morgan Algorithm

Assign initial invariant of 1
New invariant: Sum of neighboring values
3. Determine number of values

. 1 n=1
o)
#values=1

- 10 -




Morgan Algorithm

* Repeat summing of neighboring values

3 5 30 n=3 1 %H n=2I
#values=6 #values=3

04 &=
6\”/3 2
(e]
3 2

n=3 5 5 n=4
O~_ 14 _OH =
#values=6 #values=8
o 17 &
Y - , v MY
5 11 o
3 9

Morgan Algorithm

* Repeat summing of neighboring values

e Until number of values does not increase anymore

14 i s 5 5 n=4
Os_ 27 OH O~_ 14 _OH 4
#values=11 #values=8
43 17
~ o
o 31\1ﬁ/12 amm , o MY
& 11 o
21 28 5 9 ;
20 5
14 14 n=g 27 27 n=6
Os_ 27 _OH O« 71 OH 2
#values=11 #values=11

92

a3
O o
26 39 31\1ﬁ/12 l:> 6a 10 Yg
0 )
) S °
20

58
46 59
49

-11 -




Morgan Algorithm

e Assign priorities according to invariants
* Disambiguate ties by atom type and bond order
e Construct Smiles according to invariants

14 14 = 2 2 Priorities
n=5 Os_7 _OH

#values=11

11

,
3010, 1003
EIYJ 6 9Y
> (0] 8 o
2 12 5 1
4

2 Priorities

i 1. 22
CC( O)Oclccccclc =0) O- 10 OY

Isomeric SMILES

* |sotope: the integral atomic mass preceding the
atomic symbol: 13CH, = [13CHA4]

 Stereochemistry
» Atom stereo centers [(R/S)-configurations for a chiral

center]
* C[C@@H](C(=0)O)N L-Alanine
* C[C@H](C(=0)O)N D-Alanine

* Bond stereo centers [cis/trans-isomerism]
* F/C=C/F or F\C=C\F (E)-1,2-difluoroethene (trans isomer)
* F/C=C\F or F\C=C/F (2)-1,2-difluoroethene (cis isomer)

-12 -




Limitation of SMILES

* Most SMILES encoders/decoders are proprietary.

* Different groups implemented (slightly) different SMILES
generation algorithms.

* Not interchangeable between databases (or research
groups) unless the same software is used.

* Doesn’t have 2d and 3d coordinates retained, so need
to changes to other formats like MOL, SDF, etc.

e Multiple smiles for one compound

INCHI

* International Chemical Identifier

* The goal of InChl is to provide a unique string
representing a chemical substance of known structure.

* InChl is freely available and extensible.

. /
TSN 2
»
- )\ : N
O N
|

InChl = 1S/C8H10N402/c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2/h4H,1-3H3
InChiKey = RYYVLZVUVIJVGH-UHFFFAOYSA-N

- 13 -




InChlKey

* The length of an InChl string increases with the size
of the corresponding chemical structure.

* Not appropriate to use in internet search engines.
* These search engines do not care case sensitivity nor
special characters used in InChl.

* InChlKey was introduced for internet and database
searching/indexing.

* A 27-character string derived from InChl, using a
hashing algorithm.

Connection Tables

* The MDL (now Symyx{]connection table or CTfile, has become the de
facto standard for exchange of datasets.

It separates atoms and bonds into separate blocks.

A molecule file, or ‘molfile, describes a single molecular structure
that can contain disjoint fragments.

A molfile consists of a header block and a connection table.

Structure—data files (SDFiles) contain structures and data for any
number of molecules.

L-Alanine

e Chiral

3

= 2 o
N1 6
4

o
5

6 5 0 0 1 0 3 V2000 T Counts line
-0.6622 0.5342 0.0000 C 0
0.6622 —0.3000 0.0000 C
-0.7207 2.0817 0.0000 C
-1.8622 —0.3695 0.0000 N
0.6220 -1.8037 0.0000 O
1.9464 0.4244 0.0000 O
1

Atom block

coowro
mnowooo
coococown
cocococoo
cocococoo
ocoocooo

Connection
Table (Ctab)
0o 0

Bond block

[N
anewn
cocowro
cocoo
cooo

Blocks not used in this
& 1 € =1 Ctab: Atom list, Stext —
3 13 Properties block

1
1
2
1
2
1

M Iso
M END

-14 -




Mol file

3
0
_ 1
Number of bonds = 3 Me 3
Number of atoms = 4 H
4

\—ISIS— 03120006432D
4

30 0 0 0 0 0 0 099 V2000
04375 09958 00000 C. 0 0 © 0 © 0 0 0O 0 0 O ©
D3875 09958 00000 C\ O 0 0 0 0 © 0 0 0 0 0 of Atom
08000 -1.7103 00000 O\ 0 0 0 0 0 0 0 0 0 O oo}b"xk
08000 -D2814 00000 O \O O O 0 O 0 O 0 0 0 O O

231 0 0 0 0
1 2 1 0 0 0 0) Bondblock A'i';":::r";':n”
2 4 2 0 ¢ 0 0O
M END
Bond between atoms
2 and 3 is single

[2.3: MDL meol file for acetic acid, in the hydrogen-suppressed form.

Chemical Space

* Chemical space can be viewed as being analogous to the
cosmological universe.

* The total number of possible small organic molecules that
p(o)&)ulate ‘chemical space’ has been estimated to exceed
1

* Drug-like & Lead-like

Chemical Space

Leadlike

- 15 -




Drug & Drug-likeness

* Drugs are an ill-defined entity from a chemical
standpoint.

* Drug-like compound is defined as those compounds
that have acceptable ADME/Tox properties to
survive through the completion of human Phase 1
trials

Lipinski’s Rule-of-5

* The rule of five states that poor absorption or
permeability are more likely when

e cLogP (the calculated 1-octanol-water partition
coefficient, a measure of lipophilicity) is >5

* molecular mass is >500 Da

* the number of hydrogen-bond donors (OH plus NH
count) is >5

* the number of hydrogen-bond acceptors (O plus N
atoms) is >10

* Its conceptual simplicity and ease of calculation has
made it the leading measure of drug-likeness.

- 16 -




QED

e Quantitative Estimate of Drug-likeness

ARTICLES

nature
chemistry

PUBLISHED ONLINE: 24 JANUARY 2012 | DOI: 10.1038/NCHEM.1243

Quantifying the chemical beauty of drugs

G. Richard Bickerton', Gaia V. Paolini?, Jeremy Besnard’, Sorel Muresan® and Andrew L. Hopkins'*

Drug-likeness is a key consideration when selecting compounds during the early stages of drug discovery. However,
evaluation of drug-likeness in absolute terms does not reflect adequately the whole spectrum of compound quality. More
worryingly, widely used rules may inadvertently foster undesirable molecular property inflation as they permit the
encroachment of rule-compliant compounds towards their boundaries. We propose a measure of drug-likeness based on
the concept of desirability called the quantitative estimate of drug-likeness (QED). The empirical rationale of QED reflects
the underlying distribution of molecular properties. QED is intuitive, transparent, straightforward to implement in many
practical settings and allows compounds to be ranked by their relative merit. We extended the utility of QED by applying
it to the problem of molecular target druggability assessment by prioritizing a large set of published bioactive compounds.
The measure may also capture the abstract notion of aesthetics in medicinal chemistry.

Histograms of molecular properties

Eight selected molecular properties for a set of 771
orally absorbed small molecule drugs
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Quantitative
Estimate of Drug-likeness (QED)

* Combining the individual desirability functions into
the QED,

Wywlndyy + Wiy oeelndy o
+Wypalndyp, + WygpIndygp
+WhgaIndpg, + Wiorglndporg
+Warom!Ndarom + Warerrs!ndaierrs

Wuw + Waroce + Whpa
+Wygp + Wesa + Wroms
+Warom + Warerts

QED,, = exp

d(x)=a

b 1

= T+

Performance

A receiver operating characteristic plot in classifying
compounds as drug-like or otherwise

a 1.0
Ro5 (one breach
Veb
0.8 ,Ro5 (?9,b‘reaches)
‘G’!eé's’;)n 4_400
> 0.6
=
g 'Ghose
D 04 ,Hughes
--- 50:50 guess
Gleeson
0.2+ — QEDyy
— QEDymax
'RO3 = QEDw,mo
+++ Rules
0.0 +~ - | ; |
0.0 0.2 0.4 0.6 0.8 1.0

FPR (1-specificity)
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Rule-of-5 Comparison

* Direct comparison of the Ro5 and QED shows the
drugs failing (red) and passing (blue) Lipinski’s Ro5

b 700

600 -
Z 500
c
2 0.
e
w200

100 - I—I

0 |
Fail Pass
Lipinksi

€ 60

50 4 |== Lipinski fail
== Lipinski pass

I ..|I||||||||||‘|‘“

Frequency
N Wb
o O o

1 1 1

o
o
o

0.8 1.0

Frequency

Chemical aesthetics

e Question: “Would you undertake chemistry on this
compound if it were a hit?”

2:5 f 10
Yes g ——Yes
— NO / o—— ND
----- Too complex -----Too complex

204l : -Too simple 0.8 L= Too simple
>
2
L
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]
o
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1.0 3 04-
E
3
]
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0.0 T T T T 0.0 e T T T
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Synthetic Accessibility Score (SAS)

* Ertl et al., “Estimation of synthetic accessibility score
of drug-like molecules based on molecular complexity
and fragment contributions”, J. Cheminformatics, 1:8

(2009)
Journal of Cheminformatics et
Research article

Estimation of synthetic accessibility score of drug-like molecules
based on molecular complexity and fragment contributions
Peter Ertl* and Ansgar Schuffenhauer

Address: Novartis Institutes for BioMedical Research, Novartis Campus, CH-4002 Basel, Switzerland
Email: Peter Ertl* - peter.ertl@novartis.com; Ansgar Schuffenhauer - ansgar.schuffenhaver@novartis.com

+ Corresponding author
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Score Distribution

 Ease of synthesis of compounds
* SAscore = fragmentScore - complexityPenalty

== natural products
= bioactive molecules
== catalogue molecules

15

% of the data

1 2 3 4 5 6 7 8 9 10

Synthetic accessibility score
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Synthetic Accessibility Score (SAS)

10

chemists
®9
®
®

i 2 o0
1 2 3 4 5 6 7 8 9
computer

RDKit

e https://www.rdkit.org/

RDKit: Open-Source Cheminformatics Software
Useful Links

» GitHub page
« Git source code repository
o The bug tracker

Open-Source Cheminformatics
o The releases (downloads) and Machine Learning

» Sourceforge page
« The mailing lists
o Searchable archive of rdkit-discuss

o Searchable archive of rdkit-devel
« RDKit at LinkedIn
« The RDKit Blog
« Online Documentation
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Tutorial

e https://www.rdkit.org/docs/GettingStartedInPytho

n.html

Getting Started with the RDKit in Python

Important note

Beginning with the 2019.03 release, the RDKit 15 no longer suppaorting Python 2. If you need 1o continue using Python
2, please stick with a release from the 201 8.09 release cycle.

What is this?

This document is intended to provide an overview of how one can use the RDKit functionality from Python, It's not
comprehensive and it's not a manual.

W you find mistakes, of have suggestions for improvements, viwu- either fix them yoursebes in the source document
{the .15t file) or send them to the mating list (dhit-deyel ) It n particular, if you find yourseli
spending time working cut how to do something that doesn't appear to be documented please contnbute by witing it

Open-Source Cheminformatics
and Machine Leaming

up for this G 10 the tioa &5 a great service both to the RDKit commanity and o your

future sell,

Reading and Writing Molecules

Reading single molecules

The majonty of the basic molecular functionality 15 found m module rakat. ches
333 #rom rdkit dmpart Chem

Indnadual molecules can be constructed using a vaniety of approaches

535 m = Chem.MolFroasSmiles(’Cc
>33 m = Chem. HolFromiolF i1
335 stringdithMolData-open(
>33 m = Chem M]Prm]Bln:‘c[ctnngH\thﬂ: Data)

).read()

Q

<>

Colab

* https://colab.research.google.com/notebooks/intro
.ipynb

Welcome To Colaboratory o share @
File Edit View Insert Runtime Tools Help

b + Code + Text & Copy to Drive

Connect - #° Editing ~
Table of contents

Getting started
Dt science (O What is Colaboratory?

Machine learning

Colaboratory, or "Colab" for short, allows you to write and execute Python in your browser, with
More Resources

« Zero configuration required
» Free access to GPUs
B Section = Easy sharing

Machine Learning Examples

‘Whether you're a student, a data scientist or an Al researcher, Colab can make your work easier. Watch Introduction to Colab
to learn more, or just get started below!

~ Getting started

The document you are reading is not a static web page, but an interactive environment called a Colab notebook that lets you
write and execute code,

For example, here is a eode cell with a short Python script that computes a value, stores it in a variable, and prints the result:
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Installing RDKit

* Ipip install rdkit

QED

e from rdkit import Chem

em = Chem.MolFromSmiles ('Cclccceccl’)

e from rdkit.Chem import QED
* ged=QED.ged (m)
*print (ged)
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SAS

* https://mattermodeling.stackexchange.com/questi
ons/8541/how-to-compute-the-synthetic-
accessibility-score-in-python

Databases
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Chemical Databases

Database Content Size (no. of URL
compounds)

Bioactivity data
ChEMBL Bicactivity data from the medicinal chemistry literature 1 360 000 https://www.ebi.ac.uk/chembldb
PubChem Biological screening results on small molecules 49 000 000 https://pubchem.nebi.nim.nih.gov/
Patents
IBM Chemicals from full text patents 2 500 000 http://www-935.ibm.com/services/us/gbs/bao/siip/
SureChEMBL Chemicals from full text patents 12 400 000 https://www.surechembl.org
Drugs
DRUGBANK Drug data and drug target information 7700 htep://www.drugbank.ca
FDA/USP SRS Substances present in FDA regulated products 34 000 http://fdasis.nlm.nih.gov/srs/srs.jsp
Awvailability
ZINC Commercially available compounds 22 700 000 http://zinc.docking.org
emolecules Commercially available compounds 5900 000 http://www.emolecules.com
Other
ChEBI Database and ontology of Chemical Entities of 27 000 https://www.ebi.ac.uk/chebi/

Biological Interest
PDB Data on biological macromolecular structures 16 000 https://www.ebi.ac.uk/pdbe/

Note: All numbers from Apr 2014.

http://dx.doi.org/10.1016/j.ddtec.2015.01.005

Databases

Database Coverage (Number of entities)
Compounds Proteins Interactions
PubChem 111 m 99 k 273 m
ChEMBL 1,961,462 13,382 16,066,124
DUD-E 22,886 102 22.8 k*
DrugBank 13,791 5,696 27,954
STITCH 0.5 m 9.6 m 1.6b
TTD 2,251 3,473 43,875
PharmGKB 708 - -
Matador 801 2,901 15,843
DrugCentral 2,529 2,003 17,390
SuperTarget 195,770 6,219 332,828
Metz 3,858 172 258,094
MUV 93 k 17 -
ZINC 750 m** 2,864 (for 638,174
eukaryotes)
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PubChem

Explore Chemistry

al informatio

11OM compounds  272M substances  298M sicsctivities  33M itenstre  30M patents
See More

fore Statistics >

Components

* Compounds: Unique chemical structures

e Substances: Information about chemical entities

e any combination of chemical structures, synonyms,
registration IDs, descriptions, patent identifiers, protein
3D structures, and biological screening results, etc.

* Bioassay: Biological experiments
* Bioactivities
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Statistics

PubChem Data Counts

Data Collection Live Count Description

Compounds 110,040,027 Unigque chemical structures extracted from contributed PubChem Substance records
Substances 271,907,539 Information about chemical entities provided by PubChem contributors

BioAssays 1,366,296 Biological experiments provided by PubChem contributors

Bioactivities 298,299,306 Biological activity data points reported in PubChem BioAssays

Genes 103,715 Gene targets tested in PubChem BioAssays and those involved in PubChem Pathways
Proteins 96,561 Protein targets tested in PubChem BioAssays and those involved in PubChem Pathways
Taxonomy 112,763 Organisms of targets tested in PubChem BioAssays and those involved in PubChem Pathways
Pathways 237,925 Interactions between chemicals, genes, and proteins

Literature 32,848,900 Scientific publications with links in PubChem

Patents 29,940,379 Patents with links in PubChem

Data Sources 805 Organizations contributing data to PubChem

ChEMBL

* https://www.ebi.ac.uk/chembl/

* A manually curated database of bioactive molecules
with drug-like properties

Current Relea

: ChEMBL 31

Provided un

5 22 B 8

15,072 2,331,700 19,780,369 85,431 198

Targets Distinct compounds Activities Fubiications Deposited Datasets

Current Release: ChEMBL 33

S = g E

15,398 2,399,743 20,334,684 88,630 218

Targets Distinet co Activities Publications Deposited Datasats
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ChEMBL Assays — Binding,
Functional, ADMET

* Binding Assays
* Assays which directly measure the binding of a
compound to a particular target
* E.g., competition binding assays with a radioligand
* Various endpoints measured, but most commonly
reported are:
 IC50 (half maximal inhibitory concentration)
* Ki (binding affinity)
* MIC (minimum inhibitory concentration)
* % Inhibition (of activity)

Protein Targets

* Each protein target linked to a sequence in UniProt

* Information from UniProt used in ChEMBL to allow
searching:
* Protein name/description
* Synonyms and gene names
e Organism (and NCBI Tax ID)

* Proteins in ChEMBL also classified according to
family (e.g., Receptor, Kinase, Protease, Transporter
etc).

» Used for searching by target tree (Browse Targets)
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DrugBank

e https://go.drugbank.com/

* Detailed drug (i.e. chemical) data with
comprehensive dr

Building the foundation for
better health outcomes

Search over 500,000 drugs & drug
- products on DrugBank Online

C D

DrugBank example

Acetaminophen

Identification

Pharmacol logy

Summary Acetaminophen is an analgesic drug used alone or ir mbination with opioids for pair
Interactions it <
Products
4 Brand Names atafe
Categories F READ MORE
Chemical Identifiers
Raferancas Generlc Name Acetaminaphen DriigBank Accussion
Number
Clinical Trials
Pharmacoeconomics Background

Properties
Spectra
Targets (4)

Enzymes (15)

Carrlers (1)

Transporters (1)

Type small Malecule Groups

Structure 3 Welght

2 A-_\._
Oy

Chemical Formula
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Targets

1. Prostaglandin E synthase 3 2 Details

Kind Protein General Function Unfolded protein binding

Qorganism Humans Specific Function
the oxidoredu
Pharmacological action
m endac xide H2 (PGH2) to prosta
Actions [ inhibitor ]

_ytosalic prastaglandin synthase that catalyzes

on of prostaglandin

din E2

22363). Malecular ¢

{PubMedC

that localizes to genomi...

Gene Name PTGES3

Uniprot ID

Uniprot Name Prostaglandin E synthase 3
Molecular Weight 18697.195 Da

References

3 Data

cheet, Acataminopt

2. Prostaglandin G/H synthase 2 - Binding Properties % Details

General Function

Prostaglandin-endoperoxide synthase activity

ZINC

* http://zinc.docking.org/

* ZINC was originally designed for target based
virtual screening (docking)

* Now, zinc20
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(Old) ZINC subsets

Lead-Like Fragment-Like Drug-Like All Shards
Standard Lead-Like Fragment-Like Drug-Like All Shards
Size 6,053,287 847.0900 17.000,742 Purchasable 635,150
Updated 2014-09-29 2015-02-04 2014-11-24 PP g 2014-05-16
2014-11- zg
Clean Clean Leads Clean Clean Drug-Like All Clean Clean Shards
3tz 4,591,276 Fragments 13,105,609 16,403,865 325,950
Updated 2014-09-25 1,611,889 2013-11-05 2013-12-18 2014-11-24
2014-09-24
In Stoek Leads Now Frags Now Drugs Now All Now Shards Now
Size 3,687,621 704,041 10,629,555 12,782,500 424,775
Updated 2014-06-25 2015-02-04 2014-11-24 2014-05-01 2014-09-24
Boutique Boutique Leads Boutigue Frags Boutique Drugs All Boutique Boutique
Size 5,114,169 2,755.555 10,292,210 12,217.845 Shards
Updated 2012-12-24 2013-11-08 2012-11-27 2012-11-27 80.608
2013-11-08
Tg,gge ]:ilawis.i Leeso[ng, g{a:r C(‘.:/von eveDM T]‘_Jmsllg ].H’ J Pharmacol Purchasable chemieal Type I binding
n . EW em ITay S OXACO!) ethods. 2000 sSpace sites
Comments/Citation ]E'.d Engl. 1090 Dec Drug Discov Today. Jul-Aug;44(1):235-49.
16;28(24):2743-3748. 2005 Jul 151 jg!.gSz
p.mwt <= 350 a.ng pxlogp <=3.5 ad.nd " p.mwt <= 500 ang p.mwt < 190
. P .mwt >= 250 an p.mwt <=250 and p.t! p.mwt >= 150 an
Filtering Critieria p:ﬁugp< 3.5 and p.rb <=5 pxlogp< 5andprb
=7 7 a.ndp a < 150
and d?:suors <=5
p n_h acceptors
=10
Standard « Purgh, WatOK~ pH Naw Charge NAw e &
Molecular Weight (up to, Daltons)
Tolals, by
200 250 300 325 350 375 450 >500
-1 o o ] T

LogP (up to)

=5

3,655,384 5126157 10,608,025 3498214 27,417,112

12,030,074 16.154,544 33,650,249 11885957 6,807,876 3,178,487 2,648,561 2,412,998 02,025,779

4,584,223 22,941,208 30,908,513 65,047,385 26,752,849 17,839,254 9,349272 8,099,970 7,686,687 -193,701.135
12,849,121 17,977,157 38,682,058 18,584,223 13,812,274 8,111,104 7,197,414 6,979,014 -126,520,117
11,037,383 16,282,627 34,831,558 19,940,391 16,037,132 10,339,743 9,362,233 9,118,717 128,648,526
7,920,574 12,490,662 27,380,104 18,703,024 16,485,194 11,784,160 10,774,472 10,693 411 117,257,012

10,487,856 13,034,155 14,329,253 11,683,208 10,891,465 11 008!?5-52.699.695
6,367,225 8,853,064 10,320,054 9.945353 9486869 9.825079 -60.2?5.664
,188584 4,995,850 6,471,525 7,025,034 6,976,742 7,325,833 - 38,063,134
-- I1m.m 2,195,160 2,588,702 3,052,048 11,706,339
884M
Substances
Totals, by Weight 1,301,890 13,683,623 77,850,034 111,452,617 232,841,447 127,961,860 105,713,831 74,436,506 68,689,411 68682,896 1,283,178 1ok
Tranches
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Targets

* https://zinc.docking.org/majorclasses/

Name #Sub Classes # Genes # Orthologs # Observations # Substances # Purchasable # Predictions
adhesion 7 1 534 292 32 79415
auxiliary transport 3 8 14 B43 458 B2 497749
protein

cytosalic other 1 39 58 5664 4162 461 2B59674
enzyme 3 1942 2819 a1z 23889

epigenatic regulator 3 a7 103 6250 2856 510 7743378
ion channel 3 14563 22500 2638 34121578
membrane other 1 6 12 301 2n 30 166343
membrane receptor T 289 143352 13445 ToB04362
Muclear-ather 1 B 8 1053 784 [1:] 176523
Secreted 41 62 913 767 176 3733709
Structural 1 9 482 a7 161 310275
surface antigen 1 4 25 a4 a3 T4 43 5
Transeription factor 2 53 108 45550 1811 1687 5537528
Transporter 4 10 166 47632 2389 12273240
Unclassified 540 &1 11266 8680 1842 21021371

Protein Data Ban

e https://www.rcsb.org/

RCSB PDB

An Information Portal to
123622 ogical
ular Structures

M

PROTEIN DATA BANK Agvanced Search | Drowse by Annotations

e T g

A Structural View of Biology

This resource is powered by the Protein Data Bank archive-nformation about
the 3D shapes of profeins, NuCieic acids, and complex assemblies at helps.
students and researchers understand all aspects of biomedicine and

”»
" Deposit agriculture, from protein synthests 10 health and disease
As a member of the wwPDB, the RCSB PDB curates and annotates PDB data
Q Ssearch
The RCSS POB builds upon the data by creating 1001Ss and resources for
research and education in molecular biology, structural bioogy. computational
Ed Visualize blology, and beyond
Analyze Events and Activities
R ALTHETICS
& Download f g
® Dow DB-161
PG = L sciences ““ s
>
& Leam ‘ RUTGERS

Latest Entries A3 of Tesastay Oct 18 Features & Highlights m Pubiications =

Confact Us
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PDB ID

e 4-letter code
e e.g) 12AS, 3INS

e Chain ID concatenated form
* e.g) 12ASA

PyMOL: structure viewer

* Free software (http://pymol.org)

e https://pymolwiki.org/index.php/Windows Install

8008 MacPyMOL

You clicked MR.1_refine_DOS_rofine_012/IC/SER 487/CA
789 atoms.

x

Selector: salection “sela” datined with 1 Reset | Zoom | Orient | Draw | Ray

You clicked MR.1_refine_005_rofine_012/C/SER 450/CA ey SRS T A PSR, &

Selector: selection “sele” defined with 1788 atoms. Unpick | Deselect | Rock | Get View
03

< Slop1mvl>[>lluclnr&

- 33 -




UCSF ChimerX

* https://www.rbvi.ucsf.edu/chimerax/

MEBR © 9gc S5 /0L IMELES

Activity
(e.g.: ER binding affinity)

Molecular structure

| |

Statistigal Validation
Analysis of QSAR
......... v —)

X Y
Molecular Response
descriptors  variable
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Molecular Descriptors

e Constitutional descriptors

* molecular weight, number of chemical elements, number of
H-bonds or double bonds, ...

* Physicochemical descriptors
* lipophilicity, polarizability, ...
* Topological descriptors
* atomic branching, ...
* Electronic, geometrical and quantum-chemical
descriptors

* Fragmental/Structural keys
* MACCS keys, ECFP

1D, 2D, 3D

* 1D descriptors encode numerically generic
properties
* Molecular weight, molar refractivity, and octanol/water
partition coefficient, etc.
» 2D descriptors: topological representations of
molecules.
* 2D-QSAR
» 3D descriptors: obtained directly from the 3D

structure of molecules

* 3D-QSAR methods
e Dependent on the molecular conformation
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PaDEL descriptor

e http://www.yapcwsoft.com/dd/padeldescriptor/

» 1875 descriptors (1444 2D _descriptors + 431

3D _descriptors)

Descriptor Java Class Descriptor
AcidicGroupCountDescriptor nAcid
ALOGPDescriptor AlogP

AlLogP2

AMR
APolDescriptor apol
AromaticAtemsCountDescriptor naAremétom
AromaticBendsCountDescriptor nAromBend
AtomCountDescriptor nAtom

nHeavyAtom

nH

nB

nt

nN

nQ

ns

nP

nF

nCl

nBr

nl

nx
AutocorrelationDescriptor ATS0m

ATS1m

ATSIm

ATS3Im

ATS4m

ATSSm

ATSEm

ATSTm

Description

Class

Number of acidic groups. The list of acidic groups is defined by these SMARTS "$([0;H1]-C,5,FI=0)", "$([*-!$(*~[%+1)" 20
2D

Ghose-Crippen LogKow

Square of ALogP

Molar refractivity

Sum of the atomic polarizabiities (including implict hydrogens)
Humber of aromatic atems.

Number of aromatic bends

Number of atoms.

Number of heavy atoms (i.e. not hydrogen)

Number of hydrogen atoms

Number of boren atoms

Number of carbon atoms.

Number of nitrogen atoms

Number of oxygen atoms.

Number of sulphur atoms.

Number of phosphorus atoms

Number of fluorine atoms

Number of chlorine atoms:

Number of bromine atoms.

Number of iodine atoms

Number of halogen atoms (F, CI, Br, |, At, Uus)
Broto-Moreau autocorrelation - lag 0 / weighted by mass
Broto-Moreau autocorrelation - lag 1/ weighted by mass
Broto-Moreau autocorrelation - lag 2 / weighted by mass
Broto-Moreau autocorrelation - lag 3 / weighted by mass
Broto-Moreau autocorrelation - lag 4 / weighted by mass
Broto-Moreau autocorrelation - lag 5 / weighted by mass.
Broto-Moreau autocorrelation - lag 6 / weighted by mass.
Broto-Moreau autocorrelation - lag 7 / weighted by mass

20
20

Fragment Codes

* A fragment coding system is based on a collection of small
substructures or features in a closed list.

e Sub structural ‘keys’ from a fragment dictionary are usually
recorded as a binary bit string, or fingerprint.

* MACCS Keys

* Comparing fingerprint bit strings is very fast.

* The alternative to structural keys is a ‘hashed fingerprint.
* ECFPs (Extended Connectivity FingerPrints)

* Morgan fingerprint
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Molecular Fingerprint

Bit string representations of molecular structure and properties
2D structure features typically encoded as a vector of binary values

ECFPs, Morgan

Reasons for popularity in similarity searching:
* computational efficiency

* surprising effectiveness in detecting active compounds

Similarity

* Tanimoto coefficient

3 ' LITTT T T T T T ]ec
N O LRI 11 [ co
I—I_I_I_I_I_H—[II cN
~ T T} cc
A [—r] [ c=C-C
’ S _E[]I [} 0=C-C
“"W v
e LT TT T ITTTTT]
b
o, [ LT O T DIyl [T [
o, (LTI LT T ]
v
B O
T/(fp,fp,) = L}_+':-:-:: i “_I.‘-. - o
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ECFP

* Extended Connectivity FingerPrint

e https://docs.chemaxon.com/display/docs/extended-
connectivity-fingerprint-ecfp.md

742 J. Chem. Inf. Model. 2010, 50, 742-754

Extended-Connectivity Fingerprints

David Rogers*" and Mathew Hahn*

3429 North Mountain View Drive, San Diego, California 92116 and Accelrys, Incorporated, 10188 Telesis
Court, Suite 100, San Diego, California 92121

Received February 4, 2010

Extended-connectivity fingerprints (ECFPs) are a novel class of topological fingerprints for molecular
characterization. Historically, topological fingerprints were developed for substructure and similarity searching.
ECFPs were developed specifically for structure—activity modeling. ECFPs are circular fingerprints with a
number of useful qualities: they can be very rapidly calculated; they are not predefined and can represent
an essentially infinite number of different molecular features (including stereochemical information); their
features represent the presence of particular substructures, allowing easier interpretation of analysis results;
and the ECFP algorithm can be tailored to generate different types of circular fingerprints, optimized for
different uses. While the use of ECFPs has been widely adopted and validated, a description of their
implementation has not previously been presented in the literature.

48 b

* Initial assignment of atom identifier

1: 734603939

2: 1559650422
3: 1559650422
4: -1100000244
5:
6:

Os

1572579716
-1074141656

1 2 >3 "4 N5
* [terative updating of identifiers

O/\\f—,o A

\\_y A A=A

Iteration 0 Iteration 1 Iteration 2

* Duplication removal
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ECFP generation process

e Diameter (0, 2, 4, ...) or Radius (0, 1, 2, ...)

Diameter 0: |dentifiers:

R : . - -1266712900

ol 8 i ' E o -1216914295

7 ? - T : — - 78421366

F -887929888

# ) -276894788
7 Diameter 2:

-744082560

i::\7:: o 0 =‘\7;;v : ~7,f~ & . A .;’”‘3f-‘ -798098402

: 7 e W Wi M. 3] ——=  -ssouses

A . 1191819827

1687725933

% _ 1844215264
“ Diameter 4:

0 : 0 N e 0 -252457408
?’/\“fﬁ e \‘f7 5 ey i oy u”“‘f7 132019747
; . f L\ a { = -2036474688

-, -1979958858
. - o ‘ -1104704513

Generation of the fixed-length bit string

* “Folding” process
* length: 1024, 2048, ...
* Bit collisions can happen.

Identifier list representation:
-1266712900 -1216914295 78421366 -887929888 -276894788 -744082560 -798098402 -690148606 1191819827

1687725933 1844215264 -25:457408;»13f61924]/,»205647468§,fii§79938858 -1104704513 _A—

~— | —

S ,"‘ Hash function

™

Fixed-length binary representation: - - ;

el i U S 5T N\ ¥ By ALy o oSS
0100000000160000110000100011‘0000000001010000000000000000000000010100 100000000000000000

Bit collisions
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ECFP vs. RDKit Morgan FP

RDKIit Morgan2 vs PP ECFP4

1 z /I rw@ <<_§/;\J - 4
N L
09 ) o M@i}_ﬁ

o L]

Larger differences are mostly
aromaticity related

_bv_tani
o
wn

morgan2

01 02 03 04 0s 06 07 08 08 1
ECFP_4

RDKIit Morgan3 vs PP ECFPG6 is similar

Morgan/Circular FP

e Rdkit implementation of ECFP

>>> from rdkit.Chem import AllChem

>>> ml = Chem.MolFromSmiles( 'Cclcccccl')

>>> fpl = AllChem.GetMorganFingerprint(ml,2)

>>> fpl

<rdkit.DataStructs.cDataStructs.UIntSparseIntVect object at ox...>
>>> m2 = Chem.MolFromSmiles('Cclnccccl’)

>>> fp2 = AllChem.GetMorganFingerprint(m2,2)

>>> DataStructs.DiceSimilarity(fp1,fp2)

B.E50.0c

>>> fpl = AllChem.GetMorganFingerprintAsBitVect(ml,2,nBits=1024)
>>> fpl

<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at ox...>
>>> fp2 = AllChem.GetMorganFingerprintAsBitVect(m2,2,nBits=1024)
>>> DataStructs.DiceSimilarity(fpl,fp2)

@5, o .
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QSAR

e Quantitative structure—activity relationships

e Construction of a mathematical model relating a
molecular structure to a chemical property or
biological effect by means of statistical techniques

Link between toxicity and
structures
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Activity
(e.g.: ER binding affinity)

Molecular structure

| |

Statistigal Validation
Analysis of QSAR

e |

X Y
Molecular Response
descriptors  variable

QSAR-guided drug discovery

_Electronic
_Databases_

: | ) \
\ FOCAOCORRCOR ——’
: ‘ Data

Dta Collection, Repository Pt
Satinn Predictive
Integration QSAR

Workflow

£ : Virtual Screening
L & Molecular « N
A Design == RS
Experimental QSAR Models

Validation
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QSAR-based virtual screening

Chemical
Library

~10°- 10°
molecules

 Empirical Rules |

Chemical Similarity Filter |

VIRTUAL
SCREENING

- QSAR-based Filter(s) |

Feasibility/Availability ‘

A 4
Potential ., . ~10? - 10°
Hits -'.'.: ok molecules

Target prediction and optimization

"\
H,C

Y . I—S
, QSAR =
o Models :_i
Donepezil —A
Predicted (moderate probability) | Predicted (low probability)
. D4 dopamine receptor activit D2 dopamine receptor activit
Adaptive 5 £ ! - i .
D
rug Experiment Experiment
Design D4 inverse agonist (Ki= 614 nM) §19% inhibition D2 receptor at 10 pM
K—]
" QSAR =%
i i r Models ==
¢ >
HC~ o N r
Isoindole analogue 3

Predicted (high probability)
D2 dopamine receptor activity

Morpholino analogues with ==

lled polvoh I Experiment
controllea polypharmacology 96% inhibition D2 receptor at 10 uM
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Components

- 2t2= O|O|H: a set of chemical structures that are
represented by molecular descriptors

« Activity G| O| E{: a set of observed ‘activities’ associated
with the structures.

* Any form of experimental observation, not limited to
biological activities

* Numerical (ICs,, K, or K,) or
* Categorical labels (active/inactive; soluble/insoluble)

* A statistical modeling method to identify the key
relationships between the molecular descriptors and
the activities

* Linear regression, SVM, Random forest, Deep learning

Binding Affinity

* IC50 - The half maximal (50%) inhibitory concentration, a
measure of the potency of a substance in inhibiting a
specific biological or biochemical function.

 EC50 - Half maximal effective concentration, the '
concentration of compound that generates a half-maximal
response in a given assay.

* KD —dissociation constant; the concentration of ligand that
Elvesdeven odds that a given protein molecule has a ligand
ound.

* KI - For enzyme inhibitors, this is the inhibition constant,
essentially the dissociation constant KD

* AG — Gibbs free energy change associated with a chemical
reaction, here a binding reaction
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PREPARATION

e ‘Garbage-in, garbage-out’ principle

* There are many ways in which erroneous or misleading
models can be produced.

» Data and/or Statistical method

e Check that the observations are consistent, preferably
obtained from a single experimental source.

* Data taken from different assays should not be
combined into a single model where possible.

* |t is better to have the data points evenly spread.

* We cannot be sure that what is not reported is indeed
negative.

Model validation

Once the model is fully optimized, it is important to
determine the level of prediction accuracy that can be
expected when the model is applied to new compounds.

The fit of a model to its training data is not a good
indicator of its predictive performance for new
compounds.
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External Test Sets and Cross Validation

* The most basic approach for assessing models involves

splitting a dataset into a training set and a test set (or

validation set).

* Train your model until prediction error is minimized on a

test set.

* Finally test the model accuracy on an independent test set

F 3

-
________

Prediction error

Training set

A 4

Model complexity / parameterization

Data Splitting

* A number of different
methods for splitting
datasets

* Random
* Stratified
 Cluster-based (scaffold split)

* Temporal:

* Chembl20 (training),
Chembl21 (test)

Legend

o O

RS
Train <§i§> 2
= 2.0
Valid @
= 3.0
Test W
7
@ 4.0
5.0
(@)
- 6.0
7.0
L
b .
A
2 9.0
Random Split <<'> 10.0

Scaffold Split
Stratified Split

1990
1998
2002
2005
2008
2011
2012
2012
2013

2014

Time Split
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Cross Validation

* Cross- validation
* Leave-one-out, leave-cluster-out, n-fold cross validation

e Additional validation set

| routa | | o2 | | Fromi3 | | roma | | roms |

- Training Training Training Training

Training Training Training Training

Training Training - Training Training
Training Training Training - Training

Training | | Training [ | Training | | Training Test

Prediction Statistics

Complete
Data
S N N RN P

sured log BB

Maa:

Assessing Model Performance

* https://towardsdatascience.com/metrics-to-evaluate-
your-machine-learning-algorithm-f10ba6e38234

* Regression Problems

* MAE, MSE, RMSE, Pearson correlation coefficient, Spearman
Rank Correlation

* Classification Problems
* Classification Accuracy, Precision, Recall, F1 score, AUC, PRC

¢ 1
11 Statistic Value L ’
- -
\ 2 et
04 oty " N 28 [ -
“ {* e L
1 = - Stdev, 0.73 = L
=11 » 0 o
- o -
§ . RAMSE 0.44 g e
@
-2 * 8 0.63 =]
’_
a ; %@ 0.55
3 -2 -1 o 1 2 ol
Predicted log BB 0

False positsive rate
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e o - :
Chemical Dataset | CHEMICAL DATASET
: : '(and eventually organometallics) :

Structural conversion
""" Cleaning/removal of salts

Predictive QSAR
| models A

Lower limit

* |f training sets are too small, correlation and over-
fitting problem.

* Continuous response variable (activity),
* the number of compounds in the training set should be at

least 20
* about 10 compounds should be in each of the test and
external evaluation sets.

* Classification or category response variable
* training set should contain at least about 10 compounds of

each class
* test and external evaluation sets should contain no less than
five compounds for each class.

- B0 -




ML Approaches: Overall Process

Protein DB ‘
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Protein Featurization

b) Evolutionary information

A DT I PR
—_ A D T I P R
P 5 ojlojoj|o|1]o0
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Protein structure

Sequentially connected graph

.‘
o8 l ‘I
. .I

Spatially interacting graph

X

Left: Protein Structure
Middle: (Spatial/Sequential) Graph representation of protein structure

- : sequential graph
«««.2 spatial graph

Right: Spatial graph with atomic attributes
— ¢) Graph |

Feature extraction pi
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Protein PDB
Protein FASTA
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Database

Protein-centric databases

Compounds Proteins Interactions ~
UniProt - 20,385 -
Protein Data - 170,597 -
Bank
PDBbind 11,762 3,566 17,679
Pfam - 18,259 -
BRENDA 46 8083** 500 k

Integrated databases

Compounds Proteins Interactions ~
KEGG 18,749  31,224,482**** - |
BindingDB 910,479 8,161 2.1 m
Davis 72 442 30 k
K KIBA 229 211 118 k
IUPHAR/BPS 10,053 2,943 48,902

BindingDB

* https://www.bindingdb.org/rwd/bind/

* As of July 24, 2022, 2,546,129 binding data for 8,821
protein targets and 1,093,579 small molecules

e https://www.bindingdb.org/bind/glossary.jsp

BindingDB Affinity Statistics

I
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Scikit-learn

* https://scikit-learn.org/stable/

Install User Guide APl Examples More >

S C i k i t — 1 e a r‘ n Simple and efficient tools for predictive data analysis

. - 1 . Accessible to everybody, and reusable in various contexts
Machine Learning in Pyth»"‘ ‘ Built on NumPy, SciPy, and matplotlib
Open source, commercially usable - BSD license

Classification Regression Clustering

Identifying which category an object belongs to Predicting a continuous-valued attribute associated Automatic grouping of similar objects into sets.
with an object.

Applications: Spam detection, image recognition. Applications: Customer segmentation, Grouping

Algorithms: SVM, nearest neighbors, random Applications: Drug response, Stock prices. experiment outcomes

forest, and more Algorithms: SVR, nearest neighbors, random Algorithms: k-Means, spectral clustering, mean-
forest, and more shift, and more.

Kmeans CHSTONng on the Ghits Gataset (PCA-re0UCed Oata)
Centronds ae

Boosted Decinion Tree Regression With white Cross

20 - —nesmaton =t
— n_estmaton =300
) @ Wy samples
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Machine learning book

e https://product.kyobobook.co.kr/detail/S000200135401

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Concepts, Tools, and Techniques to Build Intelligent Systems

Aurelien Geron X{Xi(2)

WY FUMAE H3l/1E 969

FEmo|

0.0

2oy
OREILLY &4
%
)

Hands-On

Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Aurélien Géron

o >

3% 115,430%! 1.ccc0n

e

e

REWE

WH(22,38 V7N W) &3

© 82 xD-9A

Codes

* https://github.com/ageron/handson-ml3

C) wryctiub

Team Enterprise Explore

' master -

By ageron Add

DAISSUE_TEMPLATE

04 _training linear r

Marketplace Pricing

Go to file

+ Code -

Signin | Signup

| Notifications

A es

you through the

Machine ep Learning

Learn, Keras and

Packages
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7| Alet& 3 (Machine learning)

* Simple methods
* Linear regression-based methods
* Decision tree
* k-nearest neighbor (kNN)

* Nonlinear methods
* Random Forest
* XGboost
* Support vector machine (SVM)

* Deep learning methods
* Deep neural network
* Convolutional neural network
* Recurrent neural network
* Graph neural network

Decision Tree

* Decision trees are another interpretable approach to
QSAR modeling that produce predictions by applying
a series of descriptor-based rules to a compound.

alogP

I
<=1.00 <~1.00 - 0.40 30.140

CNSp- fPSA3 #RotBonds
T

[ 1
':(],IOSQ >0.q59

CNSp- CNSp-

#Accaptors CNSp-

CNSp- CNSp-
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Example

from sklearn.datasets import load iris

from sklearn.tree import DecisionTreeClassifier

iris = load iris()

X = iris.datal:, 2:] # petal length and width
y = iris.target

tree clf = DecisionTreeClassifier (max depth=2)

tree clf.fit (X, ¥)

value = [50, 50, 50]

petal length (cm) <= 2.45

gini = 0.667

samples = 150
class = setosa

False

petal width (cm) <= 1.75
gini= 0.5
samples = 100
value = [0, 50, 50]
class = versicolor

Figure 6-1. Iris Decision Tree

Petal width

N
wn

N
=]

2
]

Lo
=]

o
v

e
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Depth=0

s (Depth=2)}
e 000 ¢ .
o000 @ .
o 000000 ©

o o)

o

1 2 3 4 5 6 7
Petal length
Fieure 6-2. Decision Tree decision boundaries

Pros and Cons

* Tree-based methods are simple and useful for

interpretation.

* However, they typically are not competitive with the
best supervised learning approaches in terms of

prediction accuracy.

* Bagging, random forests, and boosting methods grow
multiple trees which are then combined to yield a
single consensus prediction.

e Combining a large number of trees can often result in
dramatic improvements in prediction accuracy, at the
expense of some loss interpretation.
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Bootstrapping

* Obtain distinct data sets by repeatedly sampling
observations from the original data set with
replacement.

* Each of the “bootstrap data sets" is the same size as our
original dataset.

Obs | X |Y
3 5.3 8 i
o
4 Pl b 4.3 4
zZ/ s 53 |28
///
7
/ Obs | X |Y
obs [X |Y
///
4 *2 21 |11
1 |43 |24] / Z .
< ; E 53 |28 o
21 [11] N :
: 1 43 |24
3 53 |28 R b
t \\:ZB
Original Data (Z) \\ . -
£ obs [ X |Y -
\ —_—a
\ 21 |11
21 |11
1 43 |24

Bagging

* Bootstrap aggregation, or bagging

B B B [,

A A 1\ 1\
Training

/o's“; /\'“/ /E ‘é'j&/ /'"-'03:3/

Random sampling
(with replacement = bootstrap)

/ ;‘%:25(9 / Training set

Flgure 7-4. Bageing and pasting involves training several predictors on different random samples of the traning set

vy ©
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Random Forest

* Become the industry standard method for
generating global QSAR models.

B
g set ree 1 }
3 O omare
dhdod od d
ce [olke] \\
X
/ \ e ¥
sarCie Subsample . —— -— ':::::
JTo€Rdogdo — Vo horasid
b db 0o /
e X
|
§Hhedw s ® Yol Nolk X B
e ¢ ¢ oo o ¢ 0 ° O

Variable importance measure

* For bagged/RF regression trees, we record the total
amount that the RSS is decreased due to splits over a
given predictor, averaged over all B trees.

A large value indicates an important predictor.

* Similarly, for bagged/RF classification trees, we add up
the total amount that the Gini index is decreased by

splits over a given predictor, averaged over all B trees.

FestiP

Variable importance plot
[ ] for the Heart data
I
|

T T T
0 20 40 &0 an
Variable Importance
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RF Codes

from sklearn.ensemble import RandomForestClassifier

rnd clf = RandomForestClassifier(n estimators=500, max leaf nodes=16,
n jobs=-1)
rnd clf.fit (X train, y train)

y pred rf = rnd clf.predict (X test)

>>> from sklearn.datasets import load iris
>>> iris = load iris()
>>> rnd clf = RandomForestClassifier(n estimators=500, n jobs=-1)
>>> rnd clf.fit(iris["data"], iris["target"])
>>> for name, score in zip(iris["feature names"],
rnd clf.feature importances ):
N print(ngme, score) B

sepal length (cm) 0.112492250999
sepal width (cm) 0.0231192882825
petal length (cm) 0.441030464364

petal width (cm) 0.4233578996355

Boosting

* Bagging involves creating multiple copies of the
original training data set using the bootstrap, fitting
a separate decision tree to each copy, and then
combining all of the trees in order to create a single
predictive model.

* Notably, each tree is built on a bootstrap data set,
independent of the other trees.

* Boosting works in a similar way, except that the
trees are grown sequentially: each tree is grown
using information from previously grown trees.
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AdaBoost

[ler] [ler] [l

5\8\B\ 8

Figure 7-7. AdaBoost sequential training with instance weight updates

AdaBoost Code

from sklearn.ensemble import AdaBcostClassifier

ada clf = AdaBoostClassifier
DecisionTreeClassifier (max depth=1), n estimators=200,
algorithm="SAMME.R", learning rate=0.5)

ada clf.fit (X train, y train)

- learning_rate = 1 learning_rate = 0.5

1.0 A
0.5 1
X2

0.0 1

_0.5 4
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Gradient Boosting

e Just like AdaBoost, Gradient Boosting works by
sequentially adding predictors to an ensemble, each
one correcting its predecessor.

* However, instead of tweaking the instance weights at
every iteration like AdaBoost does, this method tries
to fit the new predictor to the residual errors made by
the previous predictor.

Residuals and tree predictions

Ensemble predictions

0.8 0.8
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L of P o1
0.0 e 0.0 Ty
0.4 0.2 0.0 0.2 0.4 -0.4 -0.2 0.0 0.2 0.4
0.8
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1 — ha(x1) 061 .4°
., 02 o5 + Y
= , ¥ b 4
X b
= + Ar 0.4
S 0.0+ - Byt + ’w
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+
> -0.2 +H T 0.2
-0.4 0.0
0.4 -0.2 0.0 0.2 0.4
0.8
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-0.4 0.0 R
«3% 2
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from sklearn.ensemble import GradientBoostingRegressor

gbrt = GradientBoostingRegressor(max depth=2,
gbhrt.fit (X, v)

n estimators=3,

- 62 -
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XGBoost

Extreme Gradient Boosting
Very popular, and known to be accurate

import xgboost

Xgb reg = xgboost.XGBRegressor()
¥gb reg.fit(X train, y train)
v pred = xgb reg.predict (X val)

XGBoost also offers several nice features, such as
automatically taking care of early stopping:

¥xgb reg.fit(X train, y train,
eval set=[(X val, y val)], early stopping rounds=2)
Yy pred = xgb reg.predict(X val)

https://www.kaggle.com/stuarthallows/using-xgboost-with-
scikit-learn

Deep learning methods

Simple Neural Network Deep Learning Neural Network
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Drug Discovery

The rise of deep learning in drug

discovery

Hongming Chen’, Ola Engkvist', Yinhai Wang?, Marcus Olivecrona’ and ™
Thomas Blaschke' S|

" Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Mélndal 43183, Sweden
eQuantitative Biology, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Unit 310, Cambridge Science Park,
Milton Road, Cambridge CB4 OWG, UK

Over the past decade, deep learning has achieved remarkable success in various artificial intelligence
research areas. Evolved from the previous research on artificial neural networks, this technology has
shown superior performance to other machine learning algorithms in areas such as image and voice
recognition, natural language processing, among others. The first wave of applications of deep learning
in pharmaceutical research has emerged in recent years, and its utility has gone beyond bioactivity
predictions and has shown promise in addressing diverse problems in drug discovery. Examples will be
discussed covering bioactivity prediction, de novo molecular design, synthesis prediction and biological
image analysis.

Drug Discovery Today, 23:1241 (2018)

Merck Molecular Activity

Challanco

= kaggle F— .
@ Home
Q@  Competitions | (% Feabirod Preiction Competiton

B Daemte Merck Molecular Activity Challenge
<> Code Help develop safe and effective medicines by predicting molecular activity.

[E] Discussions

236 teams - 9 years ago

B Courses
Overview Data Code Discussion Leaderboard Rules -

More

Description Help enable the development of safe, effective medicines.

Prizes When new medicines it is impartant to identify that are highly active toward their
intended targets but not toward other targets that might cause side effects. The objective of this

Evaluation competition Is to identify the best statistical techniques for predicting biological activities of differant
s = s, both on- and off-target, given numerical descriptors generated from their chemical structures
Hospe
Submi The challenge is based on 15 molecular activity data sets, each for a bickogically relevant target. Each row
mission- 4 ; #
: corresponds o a molecule and contains descriptars darived from that molecule’s chemical struature.
Instructions
. In addition 1o the prodiction compatition, Merck s alsa hosting a visualization challenge with a $2,000
Winners prize for the mast insightful and elegant graphical representations of the data
Prizes total $40,000.
Launch Close

236 269 2,979 Points This competition awarded ranking points
Tear ltors  entrie: s This competition counted towards tiers
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Winner

E33THUANy Licauiig 1J Uiiiuil Preuictiuinn @asnd 1 uiie.

Industry domain Pharmacology

An In-the-Wild Test of Deep Learning

Anonymized molecular
Competition was intense, with more than 2900 entries in Data Type structure and activity data

just 60 days. The winners, a group of Kaggle newcomers

led by graduate student George Dahl, used a deep learning Predict activity levels

model originally developed for speech recognition. The between molecules and

winners demonstrated that deep learning—a powerful Task biologically relevant targets
form of artificial neural network, based on the way that Participants 260 participants on 226 teams
the human brain learns and represents information —
could provide accurate predictions with no domain No. of entries 2979
specific expertise or data preprocessing. The winning
result represented a 17% improvement over an industry Length of

competition 60 days

standard benchmark and was the first time that deep

learning won a Kaggle competition, opening exciting new Winning Method Deep learning neural networks

avenues for computer-aided pharmaceutical research.

Prizes $40,000

FEurthar vaadine—

Al M7 (Deep Learning 2 &)

BRIEF COMMUNICATION nature
https://dol.org/10.1038/541587-019-0224-x blOteChﬂOlOgy

Deep learning enables rapid identification of
potent DDR1 kinase inhibitors

Alex Zhavoronkov"'*, Yan A. IvanenkoV', Alex Aliper', Mark S. Veselov', Vladimir A. Aladinskiy',
Anastasiya V. Aladinskaya', Victor A. Terentiev', Daniil A. Polykovskiy', Maksim D. KuznetsoV',
Arip Asadulaev', Yury Volkov', Artem Zholus', Rim R. Shayakhmetov', Al der Zhebrak’,

Lidiya I. Minaeva', Bogdan A. Zagribelnyy', Lennart H. Lee 2, Richard Soll?, David Madge?, Li Xing?,
Tao Guo 2 and Alan Aspuru-Guzik®45¢

30,000 M =
Day 9 structures v. 40 sirucies Day 35 Day 46
L J @ Day23 L J [ J
® ® L ] L J Q S\
7 days j 12 days 2 days 25 days \\
PPy 2 v
Target selection Databases GENTRL Prioritization Synthesis b
by WuXi AppTec /
DDR1 kinase « Reference * Model training » Descriptors « Synthetic routes analysis oy
compounds « Structure generation * MCFs * Prioritization J
- Kinase inhibitors » Reward functions «C 9 Six e 4 e
z Nf)n~kmase -t - Kohonen maps * Diversity WuXi AppTec ~ d
X-ray data « Vendors
- IP base - Novelty }
* Kohonen ? v
* Preprocessing « RMSD Biological evaluation G £
* Outliers « Sammon g 8T D
* Pharmacophore -J
hypothesis « IP assessment
® ™Y ® ) ® ® @ Novel nanomolar hits
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Simple Deep learning model

* QSAR Procedure

= S N Cici=)" (o= ) Bioactivity
N(®) CN{C)C(=") CN(C)C(=N)N= o "
T L m e ] = )00 0) Clmpy
Compound database " “ / \"/ /j.l/‘%
£a10,1,1:1,00,...10.1,0,1.000..]
Molecular '
Structures Features Deep learning model
* [ssues
* Featurization 2 &
I
e DL EE

Deep Learning

e Conventional machine learning methods for drug
discovery.
e SVM, neural networks, and random forest (RF)

A difference between most other machine learning
methods and DL is the flexibility of the NN
architecture in DL.

e fully connected feed-forward networks (FNN)
e convolutional neural networks (CNN)

* recurrent neural networks (RNN)

 graph convolutional network (GCN)
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Principles of deep learning

* DL uses artificial neural networks (ANNs) with many
layers of nonlinear processing units for learning data
representations.

* Three basic layers
* input layer, hidden layer and output layer

Principles of deep learning

* The interrelationship between input and output values
of a hidden unit, Y

at wii

Yi=g (ZWN * ﬂj) a2 @m—z>0—>0 Y1
j b1

/
a3 13

* a;: the input variables

W;: weight of input node j on node i
: activation function, which is normally a nonlinear function

?e.g., sigmoid or relu)

* The training of an ANN is done by iterative modification
of the weig%mt values through the back-propagation
methods.
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Principles of deep learning

* Problems of traditional ANN
* Overfitting
* Vanishing gradients

Algorithmic improvements in DL:
* Dropout to address overfitting problem
* Rectified linear unit (ReLU) to avoid vanishing gradients
* Many novel network architectures
Most of the DL software packages are open-sourced
* TensorFlow, PyTorch

Hardware: GPU, TPU
Data, Data, Data

Popular Architectures

 Fully connected deep neural network (FCN)
e Convolutional neural network (CNN)

* Recurrent neural network (RNN)

* Graph convolutional network (GCN)

* Autoencoder (AE)
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Fully connected deep neural network (FCN)

e Contains multiple hidden layers and each layer
comprises hundreds of nonlinear process units

* FCNs can take large numbers of input features.
* Molecular Features: Fingerprint

Input layer  Hidden layer 1 Hidden layer 2 Hidden layer 3

Convolutional neural network (CNN)

Contains several convolution layers and subsampling layers
The convolution layer consists of a set of filters (or kernels).

Each filter is convoluted across the width and height of the input
volume.

The subsampling layer is used to reduce the size of feature maps.

Owing to sharing the same parameters for each filter, a CNN largely
reduces the number of free parameters learned.

It has outperformed other types of machine learning algorithms in
image recognition

Molecular feature: 2D connection table, SMILES

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Recurrent neural network (RNN)

* RNNs can take sequential data as input features,
which is very suitable for time-dependent tasks like
language modeling.

* Using a technology called long short term memory
(LSTM), RNNs can reduce the vanishing gradient

problem.
A

 Molecular feature: SMILES
Output ’ ?
Hidden — A — A

& & . o

.

Graph convolution

* Inspired by the Morgan circular fingerprint method

* First, the 2D molecular structure is read to form a state
matrix, containing atom and bond information for each
atom (Graph)

* The state matrix then goes through a convolution
operation to generate a fixed length vector as the
molecular representation.

* Molecular feature: Graph

Molecule 0 Molecular

S N/

Cl
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g

- -e -4 )

extract graph topology apply graph apply apply
and atom features  convolutions and pools graph gather dense layers
molecule —_—n —e —— @
o—t\/? o—\/? :
Pofe—ei i De—e

Cl

A

Graph Convolution

! X

p 2. 3. 4,
set for i inneigh(r) u [},  transform features sum all « and apply return new
k= deg(r) setd = dist(r, ), = ki 4+ pkd nonlinearity features for
oA o
graph _| —Q\/ LA P v f; e
topology e ; C :

1 I

for all nodes v in graph

Graph Pool Graph Gather
1. Z. i 2.
max over 1 in return new sum all nodes return graph
neigh{) u {v} features for featurization

—e

graph e e L, graph —at:
topology = pal .\ = a\ topology i . '\ H

.H“JI'I]IL' —d * atomic —
features E features

for all nodes v in graph

De novo design

* Generation of new chemical structures

* Variational autoencoder (VAE) to generate chemical structures

e Use VAE to do unsupervised learning to map chemical structures
(SMILES strings) in the ZINC database into latent space

* Latent vector in the latent space becomes a continuous representation
of molecular structure

* and can be reversibly transformed to a SMILES string through the
trained VAE

* Generation of a new structure with desirable properties

@ o HO NH
N P e

Input Encoder Reparametrization Latent space Decoder Reconstructed
molecule neural network sample point continuous numerical neural network molecule
representation
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DeepChem is
a Python library democratizing deep learning for

science.

Linux

(et Starteq

https://deepchem.io/

Tensorflow

* https://www.tensorflow.org

{F TensorFlow 4% =g APl AxA . o2 - Q a4 i
TF 2100| BAEIRSUCL A 27] T Ld
% TensorFlowS A3 Z2
SN HAlg Y 2 & oS
. /|

AP A Z2EM

=0l
: M %0} CHH 2 L0} 77|

TensorFlow Z0tE 7
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QSAR example: HIV datasets

* The HIV dataset:

* Ability to inhibit HIV replication for over 40,000 compounds.
Classification task between inactive (Cl) and active (CA and CM)

The raw data csv file contains columns below:
* “smiles”: SMILES representation of the molecular structure
* “HIV_active”: Binary labels for screening results: 1 (CA/CM) and 0 (Cl)

Total 41913, #pos = 1487: highly imbalanced dataset

https://colab.research.google.com/drive/1r4gF7DAw56 9umrs
V3L - s T = i e ) I e

smiles activity  HIV_active |~
. |CCC1=[0+][Cu-3]2([0+]=C(CC)CN)[O+]=C(CCl 0
- |C(=Celeeeee)C1=[0+][Cu-3]2([O+]=C(C=CcCl 0
. |CC(=0O)N1c2cececec2Sc2clecclececec2 Cl 0
« |Neleee(C=Cec2ccc(N)cc25(=0)(=0)0)c(5(=0) Cl 0
i |O=5(=0)(0)CCS(=0)(=0)0 Cl 0
" |CCOP(=0)(NcTececee(Che1)OCC Cl 0

Virtual Screening
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Virtual Screening

w B0

I

=3

$ @ @

Test predictions W‘ﬁ:}

reree

Table 1 Hit rates and drug-like properties for inhibitors discovered with high-throughput and virtual screening against the enzyme PTP-1B (r=f.19)

Technique Compounds tested Hits with IC5; < 100 M Hits with ICs < 10p.M Lipinski compliant hits+ Hit rater
HTS 400,000 85 5] 23 0.021%
Docking 365¢ 127 18 57 34.8%

“Numiber of 100 puM or better inhibitors that passed all four of the drug-like criteria identified in Lipineki’s ‘rule of five™; +The number of compounds experimentally tested divided by the number of
compounds with |G, values of 100 uM or less; 1 The number of top-scoring docking hits that were experimentally tested; |G, The concentration of inhibitor at which the enzyme is 50% inhibited.

o[ e ZlEE A =

* Ligand-based Virtual Screening

* Procedure

« EfZI 478
EfZI CHER A Of 2tot HE =8
ChEMBL (or BindingDB) Of| A| 2t&t= H|O| & =%
Binding affinity 0| = =& 712 (QSAR)
ZINCO| A ztet= 2to|Ee{e| +=
Virtual screeningC 2 S E=H M7
Docking A4}, Visual inspection = XA X
A=

ORX
ot
HL
O
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M LAIDD-Practice3-Predicting_plC50_of JAKZ_inhibitors.ipynb
File Edit & Runt Too Help

+ Code + Text & Copy to Drive

Predicting activity of JAK2 inhibitors

Goal of the class
* Practice the regression model using biological data
Janus kinase

ne kina t transdu ytokir
ince they were just t many disc
The name is taken from tt

ate-transferring dome

A HEZ0| 2ot EE

UniProt: https://www.uniprot.org/uniprotkb/060674/entry

BLAST Align Peptide search IDmapping SPARQL  UniProtks * e Search & @ Help

|Fun((ion Fa 060674 2 JAKZ_HUMAN

Names & Taxonomy Tyrosine-protein kinase JAK2 - Homo sapiens (Human) - EC:2.7.10.2 - Gene: JAKZ - 1132 amino aclds - Evidence at protein level - Annotation score: ()

Subcellular Location
Entry  Featureviewer  Publications  Externallinks  History
Disease & Variants

PTM/Processing BLAST & Download + & Add Addapublication Entry feedback
Expression - X

Function
Interaction

Non-receptor tyrosine kinase involved in various processes such as cell growth, development. differentiation or histone modifications. Mediates essential signaling
events in both innate and adaptive immunity. In the cytoplasm, plays a pivotal role in signal transduction via its association with type | receptors such as growth
hormone (GHR), prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), thrombopoietin (THPO); or type |l receptors including IFN-alpha, IFN-beta, IF?
Family & Domains multiple interleukins (PubMed:7615558)
Following ligand-binding to cell surface receptors, phosphorylates specific tyrosine residues on the cytoplasmic tails of the receptor, creating docking sites for STATs
proteins (PubMed:9618263).
Similar Proteins Subsequently, phosphorylates the STAT: proteins once they are recruited to the receptor. Phosphorylated STAT: then form homodimer or heterodimers and translocate

Structure

gamma and
Sequence

to the nucleus to activate gene transcription. For example, cell stimulation with erythropoietin (EPO) during erythropoiesis leads to JAK2 autophosphorylation,
activation, and its association with erythropoietin receptor (EPOR) that becomes phosphorylated in its cytoplasmic domain. Then, STATS (STAT5A or STATSB) is
recruited, phosphorylated and activated by JAK2. Once activated, dimerized STATS translocates into the nucleus and promotes the transcription of several essential
genes involved in the modulation of erythropoiesis, Part of 3 signaling cascade that is activated by increased cellular retinol and that leads to the activation of STATS
(STATSA or STATSB) (PubMed:21368206).

In addition, JAK2 mediates angiotensin-2-induced ARHGEF 1 phosphorylation (PubMed; 20098430),

Plays a role in cell cycle by phosphorylating COKN1B (PubMed:21423214) a
Cooperates with TEC through reciprocal phosphorylation to mediate cytokine-driven activation of FOS transcription. In the nucleus, plays a key role in chromatin by

O Foedbeck

specifcally mediating phosphorylation of “Tyr-41' of histone H3 (H3Y41ph), a specific tag that promotes exclusion of CBX5 (HP1 alpha) from chromatin
(PubMed:19783980). (W7 ibication

Catalytic Activity

ATP 4 L-tyrosyl-[protein] = ADP + H® + O-phospho-L-tyrosyl-[protein] 1 Aute
EC:2.7.10.2 (UniProtKB | ENZYMECS |Rheald)

Source: Rhea 10596 2

wtic Annotation | M 2 Publicatiom
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ChEMBL

e https://www.ebi.ac.uk/chembl/

C chEMBL

Unicrem CHENBLNTD [——

anually curited databise of bioactive molecules with diug-She properties. 1 brings together chemical, bioactivity and

ChEMBLisa
genomic data 1o id the translation of genomic information nfo effective new drugs

Explore ChEMBL

Description: Shows a summary of the CHEMBL entities and quantities of

dota for each o

Instructions: Click on a buble to explore a specific ChEMAL entity in more

detant

SI00NR S1 SO0

Current Release: ChEMBL 31

JAK2

C ChEMBL

ChEMBL-NTD SureChEMBL Malaria Inhibitor Prediction Downloads Web Services More

EBI > Databases > Chemical Bidegy > ChEMBL Database > Taroets Search Results > jak2

Search Results

All Results 1929 Compounds 1 Targets 1z Assays 1791 Documents 135 Cells o Tissues 0

Targets

Show Full Query @

51} m 0 Sclected - Seloct Al
Table Heatmap Browse Activities @

= e - :
§ E=E
Clear Filters
Showing 1-8 out of 8 records < n 2

= Organism Taxonomy L1

ChEMBL ~ Search a UniProt a a a -
s N - T = — : vitd .
Eukaryotes 8 D ) Hit phkit Necasalons ype Organism Compounds Activities
~ Organism Taxonomy L2
9662 12349
R By Mal. Wt By Std. Type:
Mammalia 8 [ cuemsiaon z”;"‘" PrOfein SIS nen6a4 SINGLE PROTEIN  Homo saplens I iiil
L)
i —_——— HEm —
~ Organism Taxonomy L3 s
12 12
—— & O chemss Cerebion/Tyrosine Qoeswa  PROTENPROTEN By Mol, W By Std. Type:
i protein kinase JAK2 : ©  INTERACTION e I
= Drganism { | .
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Activity Types for Target CUEMBL2971

Pver b A Ao YR —

Ligand Efficiencies B

See all bioactivities for target CHEMBL2971 used in this visualisation

ChEMBL Ligand Efficiency Piot for Target CHEMBL2971

Binding Efficiency Index (BEI)

Surface Efficlency Index (SEI)
Total items: 6441

Standard Value nM

<1 [1,100) 1100,1000) >=1000

ctivity Data

- “CSV” Cr2 2 & S HE 5 JAK2 Chembl.csv

Browse Activities

6,451 Activitien

0 Slncted - Satact & e
=1
Filters H A ¥ .
0 -

= Standerd Type Showing 1-20 out of 6,451 records < - 203 &4 5= D

s e ’
[ £

" HE Nl e, s, e, Swsws , sy penm S ey e e
e o0 o T Key T Type T melation T Walwe ° Units T vale © Comment S " Description T Label ©  Ory

+ Target Type

Binding afniy t

INGLE PROTEIN 451
G ] xa 0o . o Wi Dot CHEMOLIZ44E7 T3 catahy o
dnmae 1K
* Organism Taxpnamy L1
Eukaryatas B4
O L 15000 i saz N Data o D
~ Organism Taxanomy L2
Ramealia Bas1
single
= Organism Taxonamy L3 Bl INCEIS4Ee K 0.036 M 10,80 o Dot CHEMBLISOSET0 JAKM Midomai- pioten Mo B
catshetic] kinsse  format
CHEMDLL
Pramates o481
e 9
= Target Organism Coney singe
| EXE- 55D (7] 2000.0 ™ 570 M Dzt EMALSSDH0T  JAKZ [Kin Dam o
21 Nns ot
Homa sapies w51 it 100
~ BAD Label . Binding conssant
{5 PRE 413 [ 240 nH 203 Mo Data o o B
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QSAR Model 7} &

* Input: Smiles
* Feature: ECFP
 Target values: pChEMBL Value

Models: Regression model

* Random Forest regression (Scikit-learn:
RandomForestRegressor)

* FNN (Tensorflow.keras, Deepchem)
* Loss: Mean square error (MSE)

 Model selection:
e Validation set

ZINC

* https://zinc.docking.org/
[ees sl e o0 e

ZINC Is provided by the Inwin and Shoichet Laboratories in the Department
Z I N ' 20 of Pharmaceutical Chemisiry al the Universily of Califomnia, San Francisco
(UCSF). We thank NIGMS for financial suppart (GM71896)
Welcome to ZING, a free database of commercially-available compounds To cile ZING, please reference: Irwin, Tang, Young, Dandarchuluun, Wong,
for virtual screening. ZINC contains over 230 million purchasable Khurelbaatar, Moroz, Mayfield, Sayle, J. Chem. Inf. Model 2020, In press.
compounds In ready-lo-dock, 3D formats. ZINC also contains over 750 hitps:ipubs.acs.org/doi10.1021/acs.jcim.0c00675. You may also wish o
million purchasable compounds you ean search for analogs in under a cite our previous papers: Sterling and Irwin, J. Chem. inf. Modal, 2015
minute hitp:#pubs. acs. org/dovabs/10. 1021/acs foim 5600559, Irwin, Sterling,

Mysinger, Bolstad and Coleman, J. Chem. Inf. Model, 2012 DO
10.1021/el3001277 or Irwin and Shoichet, J. Chem. inf. Model
2005;45(1):177-62 POF, DOI

Getting Started Ask Questions ZINC20 News

You can use ZINC for general questions such as « ZINCZ0 has been reledsed

Caveat Emptor: We do not guaraniee the quality of
any molocule for any purpose and take no

responsibility for emmors arising from the use of this
database, ZINC is provided in the hope that R will be

usatul, but you must uss it at your own risk
Explore Resources

Chemistry

Represantation
And More
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Compound Library

* https://zinc.docking.org/tranches/home/

Rep o Reaci  Stondard = Purch,  Wait Ol = pH  NAw Charge  NAw Hie &

Molecular Weight {up to, Daltons)

Totals, by

200 250 300 325 350 75 400 a5 450 500 >500
LogP

-1 2,241,498 5,582,780
o | 3655384 5126157 10,608,025 3498214 mmm ' e | 27417112
1 26838 1200074 1654544 3,65049 1385357 807478 | S47oAs?) | 2eAacenl |24tz ese 92,025,779
2 ‘4,584,223 22,941,208 30,908,513 65,047,385 26,752,849 17,839,254 9,349,272 B,099970 7686687 183,701,135
gz.s 2436113 12.849121 17.977.457 38,682,058 18,584,223 13812274 B.A11104 7497414 6979014 126520117
%.a 3 ‘im?i!v 11,037,383 16,282,627 34,831,558 19940391 16,037,132 10,339,743 9362233 9118717 128 648 526
k]
35 7,920,574 12,490,662 27,380,104 18,703,024 16485194 11,784,160 10,774,472 10,693,411 117,257,012
L 4332131 6472808 10,487,856 13,034,155 14,329,253 11,683,208 10,891,465 11,003,575 82,698,695
45 8.853.064 10320054 9945353 9486869 9825079 50,275,664
5 6471525 7025034 6,976,742 7325833 38,063,134
=5 1670855 295160 2588702 3,052,048 11,706,339

BBAM

bstances
1.9K

Tranches

S
Totals, by Weight 1,301,890 13,683,623 77.850,034 111,452,617 232,841,447 127,961,860 105,713,831 74,436,506 68,660,411 68,662,896 1,283,178

Compound Library

* Biological 2 Major target classes = enzyme > kinase 2>
substances

o« “csv” file L2 2 E Bl HZL

1= » PN | [y SIS ————— | o S jyp— B
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= i Nl = AN W
by 0% ook st alita®e
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Gnanarone
y ® J
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Virtual Screening

_

o« 7' ZSH QSAR regression model® &0t 218t =
20| E 2|0 A&
* Sorting
* Prediction values

* Screening
« &2t or {2 FAI 2tet = XA
* Training data0fl Y= =tet== 12| FAHE ALt
(Tanimoto Coefficient or Dice Coefficient)

Docking

e http://www.swissdock.ch/

RSEERGo |{  ins Sv Sin e S s e ) ]
B

Swiss Institute of
Bioinformatics

SwissDock

Home Target Database g Line A ip Contact

What?
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And, more

* ADME

* Toxicity ol =

 MD simulation (%, RMDS)
* Free energy (AAG) Al 4t

* Optimization &

De Novo Design

o Continous variable
Variational representation for:

- Autoencoder ¢ * Interpolation

- Jointly-trained ; * Optimization

. on properties * Exploration

SMILES

ncoder ~ Latent Space SMILES

| e e SRS EE N

m
Hanl
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Optimization

* MORLD
e http://morld.kaist.ac.kr/

e Questions?
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